finetuned-amazon / README.md
rathi2023's picture
End of training
c4f88c6 verified
|
raw
history blame
2.39 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: finetuned-amazon
    results: []

finetuned-amazon

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7690
  • Accuracy: 0.1038
  • F1: 0.0409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.7793 0.27 100 2.7709 0.0390 0.0241
2.773 0.54 200 2.7767 0.0410 0.0230
2.7752 0.81 300 2.7872 0.0 0.0
2.7731 1.08 400 2.7793 0.0171 0.0111
2.7744 1.34 500 2.7733 0.0886 0.0507
2.7755 1.61 600 2.7740 0.0733 0.0376
2.7706 1.88 700 2.7755 0.0657 0.0401
2.7723 2.15 800 2.7690 0.1038 0.0409
2.7732 2.42 900 2.7738 0.1010 0.0410
2.7738 2.69 1000 2.7729 0.0914 0.0384
2.7734 2.96 1100 2.7732 0.0581 0.0343
2.7723 3.23 1200 2.7726 0.0638 0.0361
2.7725 3.49 1300 2.7731 0.0667 0.0297
2.7725 3.76 1400 2.7734 0.0476 0.0296

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2