File size: 8,856 Bytes
ab80e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
Simplified training script for Universal Image Classifier
Works with basic PyTorch installation
"""
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
from pathlib import Path
import json
from typing import List, Tuple
from dataclasses import dataclass
# Import our models
from models import create_model, MODEL_REGISTRY
from config import ModelConfig, TrainingConfig
class SimpleImageDataset(Dataset):
"""Simple image dataset without torchvision transforms"""
def __init__(self, image_paths: List[str], labels: List[int], input_size: Tuple[int, int] = (64, 64)):
self.image_paths = image_paths
self.labels = labels
self.input_size = input_size
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Load image
image = Image.open(self.image_paths[idx]).convert('RGB')
# Resize image
image = image.resize(self.input_size)
# Convert to tensor and normalize
image_array = np.array(image).astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image_array).permute(2, 0, 1) # CHW format
return image_tensor, self.labels[idx]
def load_dataset_from_folder(data_dir: str) -> Tuple[List[str], List[int], List[str]]:
"""Load dataset from folder structure"""
data_path = Path(data_dir)
if not data_path.exists():
raise FileNotFoundError(f"Data directory '{data_dir}' not found")
image_paths = []
labels = []
class_names = []
# Get class directories
class_dirs = [d for d in data_path.iterdir() if d.is_dir()]
class_dirs.sort() # Ensure consistent ordering
for class_idx, class_dir in enumerate(class_dirs):
class_name = class_dir.name
class_names.append(class_name)
# Get all image files in class directory
for img_path in class_dir.glob('*.png'):
image_paths.append(str(img_path))
labels.append(class_idx)
print(f"Found {len(image_paths)} images across {len(class_names)} classes")
print(f"Classes: {class_names}")
return image_paths, labels, class_names
def train_model():
"""Train the Universal Image Classifier"""
# Configuration
model_config = ModelConfig(
input_height=64,
input_width=64,
num_classes=4,
hidden_dim=256,
num_layers=6,
dropout_rate=0.1,
use_batch_norm=True
)
training_config = TrainingConfig(
batch_size=32,
learning_rate=0.001,
num_epochs=20, # Reduced for faster training
weight_decay=1e-4,
early_stopping_patience=10,
validation_split=0.2
)
# Load dataset
data_dir = "sample_dataset"
try:
image_paths, labels, class_names = load_dataset_from_folder(data_dir)
except FileNotFoundError as e:
print(f"Error: {e}")
print("Please run 'python generate_sample_data.py' first to create sample data")
return
# Update model config with actual number of classes
model_config.num_classes = len(class_names)
# Split dataset (80% train, 20% validation)
total_samples = len(image_paths)
train_size = int(0.8 * total_samples)
# Simple random split
indices = list(range(total_samples))
np.random.seed(42) # For reproducibility
np.random.shuffle(indices)
train_indices = indices[:train_size]
val_indices = indices[train_size:]
train_paths = [image_paths[i] for i in train_indices]
train_labels = [labels[i] for i in train_indices]
val_paths = [image_paths[i] for i in val_indices]
val_labels = [labels[i] for i in val_indices]
# Create datasets
train_dataset = SimpleImageDataset(train_paths, train_labels)
val_dataset = SimpleImageDataset(val_paths, val_labels)
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=training_config.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=training_config.batch_size, shuffle=False)
print(f"Training samples: {len(train_dataset)}")
print(f"Validation samples: {len(val_dataset)}")
# Create model
model_name = "mlp_deep_residual"
model = create_model(model_name, model_config)
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\nModel: {model_name}")
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
# Setup training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=training_config.learning_rate, weight_decay=training_config.weight_decay)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5, factor=0.5)
# Create outputs directory
os.makedirs('outputs', exist_ok=True)
# Training loop
best_val_acc = 0.0
patience_counter = 0
print(f"\n๐ Starting training for {training_config.num_epochs} epochs...")
for epoch in range(training_config.num_epochs):
# Training phase
model.train()
train_loss = 0.0
train_correct = 0
train_total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = output.max(1)
train_total += target.size(0)
train_correct += predicted.eq(target).sum().item()
if batch_idx % 10 == 0:
print(f'Epoch {epoch+1}/{training_config.num_epochs} [{batch_idx * len(data)}/{len(train_dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)] Loss: {loss.item():.6f}')
# Validation phase
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item()
_, predicted = output.max(1)
val_total += target.size(0)
val_correct += predicted.eq(target).sum().item()
# Calculate metrics
train_acc = 100. * train_correct / train_total
val_acc = 100. * val_correct / val_total
train_loss /= len(train_loader)
val_loss /= len(val_loader)
print(f'Epoch {epoch+1}/{training_config.num_epochs}:')
print(f' Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')
print(f' Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
# Learning rate scheduling
scheduler.step(val_loss)
# Save best model
if val_acc > best_val_acc:
best_val_acc = val_acc
patience_counter = 0
# Save model
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'val_acc': val_acc,
'model_config': model_config.__dict__,
'class_names': class_names
}, 'outputs/best_model.pth')
print(f' โ New best model saved! Val Acc: {val_acc:.2f}%')
else:
patience_counter += 1
# Early stopping
if patience_counter >= training_config.early_stopping_patience:
print(f'Early stopping triggered after {epoch+1} epochs')
break
print()
print(f'๐ Training completed!')
print(f'Best validation accuracy: {best_val_acc:.2f}%')
print(f'Model saved to: outputs/best_model.pth')
# Save class names and config
with open('outputs/class_names.json', 'w') as f:
json.dump(class_names, f)
with open('outputs/model_config.json', 'w') as f:
json.dump(model_config.__dict__, f, indent=2)
print('Class names and config saved to outputs/')
if __name__ == "__main__":
train_model()
|