File size: 8,856 Bytes
ab80e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
Simplified training script for Universal Image Classifier
Works with basic PyTorch installation
"""
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
from pathlib import Path
import json
from typing import List, Tuple
from dataclasses import dataclass

# Import our models
from models import create_model, MODEL_REGISTRY
from config import ModelConfig, TrainingConfig

class SimpleImageDataset(Dataset):
    """Simple image dataset without torchvision transforms"""
    
    def __init__(self, image_paths: List[str], labels: List[int], input_size: Tuple[int, int] = (64, 64)):
        self.image_paths = image_paths
        self.labels = labels
        self.input_size = input_size
    
    def __len__(self):
        return len(self.image_paths)
    
    def __getitem__(self, idx):
        # Load image
        image = Image.open(self.image_paths[idx]).convert('RGB')
        
        # Resize image
        image = image.resize(self.input_size)
        
        # Convert to tensor and normalize
        image_array = np.array(image).astype(np.float32) / 255.0
        image_tensor = torch.from_numpy(image_array).permute(2, 0, 1)  # CHW format
        
        return image_tensor, self.labels[idx]

def load_dataset_from_folder(data_dir: str) -> Tuple[List[str], List[int], List[str]]:
    """Load dataset from folder structure"""
    data_path = Path(data_dir)
    
    if not data_path.exists():
        raise FileNotFoundError(f"Data directory '{data_dir}' not found")
    
    image_paths = []
    labels = []
    class_names = []
    
    # Get class directories
    class_dirs = [d for d in data_path.iterdir() if d.is_dir()]
    class_dirs.sort()  # Ensure consistent ordering
    
    for class_idx, class_dir in enumerate(class_dirs):
        class_name = class_dir.name
        class_names.append(class_name)
        
        # Get all image files in class directory
        for img_path in class_dir.glob('*.png'):
            image_paths.append(str(img_path))
            labels.append(class_idx)
    
    print(f"Found {len(image_paths)} images across {len(class_names)} classes")
    print(f"Classes: {class_names}")
    
    return image_paths, labels, class_names

def train_model():
    """Train the Universal Image Classifier"""
    
    # Configuration
    model_config = ModelConfig(
        input_height=64,
        input_width=64,
        num_classes=4,
        hidden_dim=256,
        num_layers=6,
        dropout_rate=0.1,
        use_batch_norm=True
    )
    
    training_config = TrainingConfig(
        batch_size=32,
        learning_rate=0.001,
        num_epochs=20,  # Reduced for faster training
        weight_decay=1e-4,
        early_stopping_patience=10,
        validation_split=0.2
    )
    
    # Load dataset
    data_dir = "sample_dataset"
    
    try:
        image_paths, labels, class_names = load_dataset_from_folder(data_dir)
    except FileNotFoundError as e:
        print(f"Error: {e}")
        print("Please run 'python generate_sample_data.py' first to create sample data")
        return
    
    # Update model config with actual number of classes
    model_config.num_classes = len(class_names)
    
    # Split dataset (80% train, 20% validation)
    total_samples = len(image_paths)
    train_size = int(0.8 * total_samples)
    
    # Simple random split
    indices = list(range(total_samples))
    np.random.seed(42)  # For reproducibility
    np.random.shuffle(indices)
    
    train_indices = indices[:train_size]
    val_indices = indices[train_size:]
    
    train_paths = [image_paths[i] for i in train_indices]
    train_labels = [labels[i] for i in train_indices]
    val_paths = [image_paths[i] for i in val_indices]
    val_labels = [labels[i] for i in val_indices]
    
    # Create datasets
    train_dataset = SimpleImageDataset(train_paths, train_labels)
    val_dataset = SimpleImageDataset(val_paths, val_labels)
    
    # Create data loaders
    train_loader = DataLoader(train_dataset, batch_size=training_config.batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=training_config.batch_size, shuffle=False)
    
    print(f"Training samples: {len(train_dataset)}")
    print(f"Validation samples: {len(val_dataset)}")
    
    # Create model
    model_name = "mlp_deep_residual"
    model = create_model(model_name, model_config)
    
    # Count parameters
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    
    print(f"\nModel: {model_name}")
    print(f"Total parameters: {total_params:,}")
    print(f"Trainable parameters: {trainable_params:,}")
    
    # Setup training
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")
    
    model = model.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=training_config.learning_rate, weight_decay=training_config.weight_decay)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5, factor=0.5)
    
    # Create outputs directory
    os.makedirs('outputs', exist_ok=True)
    
    # Training loop
    best_val_acc = 0.0
    patience_counter = 0
    
    print(f"\n๐Ÿš€ Starting training for {training_config.num_epochs} epochs...")
    
    for epoch in range(training_config.num_epochs):
        # Training phase
        model.train()
        train_loss = 0.0
        train_correct = 0
        train_total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            
            train_loss += loss.item()
            _, predicted = output.max(1)
            train_total += target.size(0)
            train_correct += predicted.eq(target).sum().item()
            
            if batch_idx % 10 == 0:
                print(f'Epoch {epoch+1}/{training_config.num_epochs} [{batch_idx * len(data)}/{len(train_dataset)} '
                      f'({100. * batch_idx / len(train_loader):.0f}%)] Loss: {loss.item():.6f}')
        
        # Validation phase
        model.eval()
        val_loss = 0.0
        val_correct = 0
        val_total = 0
        
        with torch.no_grad():
            for data, target in val_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                val_loss += criterion(output, target).item()
                
                _, predicted = output.max(1)
                val_total += target.size(0)
                val_correct += predicted.eq(target).sum().item()
        
        # Calculate metrics
        train_acc = 100. * train_correct / train_total
        val_acc = 100. * val_correct / val_total
        train_loss /= len(train_loader)
        val_loss /= len(val_loader)
        
        print(f'Epoch {epoch+1}/{training_config.num_epochs}:')
        print(f'  Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')
        print(f'  Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
        
        # Learning rate scheduling
        scheduler.step(val_loss)
        
        # Save best model
        if val_acc > best_val_acc:
            best_val_acc = val_acc
            patience_counter = 0
            
            # Save model
            torch.save({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'val_acc': val_acc,
                'model_config': model_config.__dict__,
                'class_names': class_names
            }, 'outputs/best_model.pth')
            
            print(f'  โœ“ New best model saved! Val Acc: {val_acc:.2f}%')
        else:
            patience_counter += 1
        
        # Early stopping
        if patience_counter >= training_config.early_stopping_patience:
            print(f'Early stopping triggered after {epoch+1} epochs')
            break
        
        print()
    
    print(f'๐ŸŽ‰ Training completed!')
    print(f'Best validation accuracy: {best_val_acc:.2f}%')
    print(f'Model saved to: outputs/best_model.pth')
    
    # Save class names and config
    with open('outputs/class_names.json', 'w') as f:
        json.dump(class_names, f)
    
    with open('outputs/model_config.json', 'w') as f:
        json.dump(model_config.__dict__, f, indent=2)
    
    print('Class names and config saved to outputs/')

if __name__ == "__main__":
    train_model()