File size: 6,729 Bytes
ab80e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
Universal Image Classification Models
Flexible architectures for any image classification task
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from config import ModelConfig 

class ClassificationLoss(nn.Module):
    """Multi-class classification loss with label smoothing option"""
    def __init__(self, label_smoothing: float = 0.0):
        super().__init__()
        self.label_smoothing = label_smoothing

    def forward(self, logits: torch.Tensor, target: torch.LongTensor) -> torch.Tensor:
        if self.label_smoothing > 0:
            return F.cross_entropy(logits, target, label_smoothing=self.label_smoothing)
        return F.cross_entropy(logits, target)
 
class LinearClassifier(nn.Module):
    """Simple linear baseline classifier"""
    def __init__(self, config: Optional[ModelConfig] = None):
        super().__init__()
        if config is None:
            config = ModelConfig()
        
        self.config = config
        in_features = 3 * config.input_height * config.input_width
        self.linear = nn.Linear(in_features, config.num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.view(x.size(0), -1)
        return self.linear(x)

class MLPClassifier(nn.Module):
    """MLP classifier with configurable architecture"""
    def __init__(self, config: Optional[ModelConfig] = None):
        super().__init__()
        if config is None:
            config = ModelConfig()
            
        self.config = config
        in_features = 3 * config.input_height * config.input_width
        
        layers = []
        layers.append(nn.Linear(in_features, config.hidden_dim))
        if config.use_batch_norm:
            layers.append(nn.BatchNorm1d(config.hidden_dim))
        layers.append(nn.ReLU())
        if config.dropout_rate > 0:
            layers.append(nn.Dropout(config.dropout_rate))
        layers.append(nn.Linear(config.hidden_dim, config.num_classes))
        
        self.net = nn.Sequential(*layers)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.view(x.size(0), -1)
        return self.net(x)

class MLPClassifierDeep(nn.Module):
    """Deep MLP classifier with multiple hidden layers"""
    def __init__(self, config: Optional[ModelConfig] = None):
        super().__init__()
        if config is None:
            config = ModelConfig()
            
        self.config = config
        in_features = 3 * config.input_height * config.input_width
        
        layers = []
        # Input layer
        layers.append(nn.Linear(in_features, config.hidden_dim))
        if config.use_batch_norm:
            layers.append(nn.BatchNorm1d(config.hidden_dim))
        layers.append(nn.ReLU())
        if config.dropout_rate > 0:
            layers.append(nn.Dropout(config.dropout_rate))
        
        # Hidden layers
        for _ in range(config.num_layers - 2):
            layers.append(nn.Linear(config.hidden_dim, config.hidden_dim))
            if config.use_batch_norm:
                layers.append(nn.BatchNorm1d(config.hidden_dim))
            layers.append(nn.ReLU())
            if config.dropout_rate > 0:
                layers.append(nn.Dropout(config.dropout_rate))
        
        # Output layer
        layers.append(nn.Linear(config.hidden_dim, config.num_classes))
        
        self.net = nn.Sequential(*layers)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.view(x.size(0), -1)
        return self.net(x)

class ResidualBlock(nn.Module):
    """Residual block for deep networks"""
    def __init__(self, hidden_dim: int, use_batch_norm: bool = True, dropout_rate: float = 0.0):
        super().__init__()
        layers = []
        layers.append(nn.Linear(hidden_dim, hidden_dim))
        if use_batch_norm:
            layers.append(nn.BatchNorm1d(hidden_dim))
        layers.append(nn.ReLU())
        if dropout_rate > 0:
            layers.append(nn.Dropout(dropout_rate))
        layers.append(nn.Linear(hidden_dim, hidden_dim))
        if use_batch_norm:
            layers.append(nn.BatchNorm1d(hidden_dim))
        
        self.block = nn.Sequential(*layers)
        self.relu = nn.ReLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        residual = x
        out = self.block(x)
        out = out + residual  # Residual connection
        return self.relu(out)

class MLPClassifierDeepResidual(nn.Module):
    """Deep MLP with residual connections"""
    def __init__(self, config: Optional[ModelConfig] = None):
        super().__init__()
        if config is None:
            config = ModelConfig()
            
        self.config = config
        in_features = 3 * config.input_height * config.input_width
        
        # Input projection
        self.input_layer = nn.Linear(in_features, config.hidden_dim)
        self.input_bn = nn.BatchNorm1d(config.hidden_dim) if config.use_batch_norm else nn.Identity()
        self.input_relu = nn.ReLU()
        self.input_dropout = nn.Dropout(config.dropout_rate) if config.dropout_rate > 0 else nn.Identity()
        
        # Residual blocks
        self.residual_blocks = nn.ModuleList([
            ResidualBlock(config.hidden_dim, config.use_batch_norm, config.dropout_rate)
            for _ in range(config.num_layers - 2)
        ])
        
        # Output layer
        self.output_layer = nn.Linear(config.hidden_dim, config.num_classes)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.view(x.size(0), -1)
        
        # Input projection
        x = self.input_layer(x)
        x = self.input_bn(x)
        x = self.input_relu(x)
        x = self.input_dropout(x)
        
        # Residual blocks
        for block in self.residual_blocks:
            x = block(x)
        
        # Output
        return self.output_layer(x)

# Model factory for easy instantiation
MODEL_REGISTRY = {
    "linear": LinearClassifier,
    "mlp": MLPClassifier,
    "mlp_deep": MLPClassifierDeep,
    "mlp_deep_residual": MLPClassifierDeepResidual,
}

def create_model(model_name: str, config: Optional[ModelConfig] = None) -> nn.Module:
    """Factory function to create models"""
    if model_name not in MODEL_REGISTRY:
        raise ValueError(f"Unknown model: {model_name}. Available: {list(MODEL_REGISTRY.keys())}")
    
    return MODEL_REGISTRY[model_name](config)

def count_parameters(model: nn.Module) -> int:
    """Count trainable parameters in a model"""
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

def calculate_model_size_mb(model: nn.Module) -> float:
    """Calculate model size in MB"""
    return count_parameters(model) * 4 / 1024 / 1024  # 4 bytes per float32