File size: 39,706 Bytes
8e8979e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
model-index:
- name: layoutlmv2-finetuned-cord_500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-cord_500
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2207
- Menu.cnt Precision: 1.0
- Menu.cnt Recall: 0.9867
- Menu.cnt F1: 0.9933
- Menu.cnt Number: 225
- Menu.discountprice Precision: 0.8889
- Menu.discountprice Recall: 0.8
- Menu.discountprice F1: 0.8421
- Menu.discountprice Number: 10
- Menu.etc Precision: 0.0
- Menu.etc Recall: 0.0
- Menu.etc F1: 0.0
- Menu.etc Number: 3
- Menu.itemsubtotal Precision: 0.0
- Menu.itemsubtotal Recall: 0.0
- Menu.itemsubtotal F1: 0.0
- Menu.itemsubtotal Number: 6
- Menu.nm Precision: 0.9764
- Menu.nm Recall: 0.9880
- Menu.nm F1: 0.9822
- Menu.nm Number: 251
- Menu.num Precision: 0.8462
- Menu.num Recall: 1.0
- Menu.num F1: 0.9167
- Menu.num Number: 11
- Menu.price Precision: 0.9723
- Menu.price Recall: 0.9919
- Menu.price F1: 0.9820
- Menu.price Number: 248
- Menu.sub Cnt Precision: 0.85
- Menu.sub Cnt Recall: 1.0
- Menu.sub Cnt F1: 0.9189
- Menu.sub Cnt Number: 17
- Menu.sub Nm Precision: 0.8421
- Menu.sub Nm Recall: 0.8649
- Menu.sub Nm F1: 0.8533
- Menu.sub Nm Number: 37
- Menu.sub Price Precision: 0.95
- Menu.sub Price Recall: 0.95
- Menu.sub Price F1: 0.9500
- Menu.sub Price Number: 20
- Menu.unitprice Precision: 0.9855
- Menu.unitprice Recall: 0.9855
- Menu.unitprice F1: 0.9855
- Menu.unitprice Number: 69
- Sub Total.discount Price Precision: 0.8571
- Sub Total.discount Price Recall: 0.8571
- Sub Total.discount Price F1: 0.8571
- Sub Total.discount Price Number: 7
- Sub Total.etc Precision: 0.9231
- Sub Total.etc Recall: 0.9231
- Sub Total.etc F1: 0.9231
- Sub Total.etc Number: 13
- Sub Total.service Price Precision: 1.0
- Sub Total.service Price Recall: 1.0
- Sub Total.service Price F1: 1.0
- Sub Total.service Price Number: 12
- Sub Total.subtotal Price Precision: 0.9714
- Sub Total.subtotal Price Recall: 0.9855
- Sub Total.subtotal Price F1: 0.9784
- Sub Total.subtotal Price Number: 69
- Sub Total.tax Price Precision: 1.0
- Sub Total.tax Price Recall: 1.0
- Sub Total.tax Price F1: 1.0
- Sub Total.tax Price Number: 47
- Total.cashprice Precision: 1.0
- Total.cashprice Recall: 0.9167
- Total.cashprice F1: 0.9565
- Total.cashprice Number: 72
- Total.changeprice Precision: 0.9672
- Total.changeprice Recall: 1.0
- Total.changeprice F1: 0.9833
- Total.changeprice Number: 59
- Total.creditcardprice Precision: 1.0
- Total.creditcardprice Recall: 0.9412
- Total.creditcardprice F1: 0.9697
- Total.creditcardprice Number: 17
- Total.emoneyprice Precision: 0.1667
- Total.emoneyprice Recall: 0.5
- Total.emoneyprice F1: 0.25
- Total.emoneyprice Number: 2
- Total.menuqty Cnt Precision: 0.9667
- Total.menuqty Cnt Recall: 1.0
- Total.menuqty Cnt F1: 0.9831
- Total.menuqty Cnt Number: 29
- Total.menutype Cnt Precision: 1.0
- Total.menutype Cnt Recall: 0.7143
- Total.menutype Cnt F1: 0.8333
- Total.menutype Cnt Number: 7
- Total.total Etc Precision: 0.0
- Total.total Etc Recall: 0.0
- Total.total Etc F1: 0.0
- Total.total Etc Number: 4
- Total.total Price Precision: 0.9709
- Total.total Price Recall: 0.9901
- Total.total Price F1: 0.9804
- Total.total Price Number: 101
- Overall Precision: 0.9627
- Overall Recall: 0.9671
- Overall F1: 0.9649
- Overall Accuracy: 0.9690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Menu.cnt Precision | Menu.cnt Recall | Menu.cnt F1 | Menu.cnt Number | Menu.discountprice Precision | Menu.discountprice Recall | Menu.discountprice F1 | Menu.discountprice Number | Menu.etc Precision | Menu.etc Recall | Menu.etc F1 | Menu.etc Number | Menu.itemsubtotal Precision | Menu.itemsubtotal Recall | Menu.itemsubtotal F1 | Menu.itemsubtotal Number | Menu.nm Precision | Menu.nm Recall | Menu.nm F1 | Menu.nm Number | Menu.num Precision | Menu.num Recall | Menu.num F1 | Menu.num Number | Menu.price Precision | Menu.price Recall | Menu.price F1 | Menu.price Number | Menu.sub Cnt Precision | Menu.sub Cnt Recall | Menu.sub Cnt F1 | Menu.sub Cnt Number | Menu.sub Nm Precision | Menu.sub Nm Recall | Menu.sub Nm F1 | Menu.sub Nm Number | Menu.sub Price Precision | Menu.sub Price Recall | Menu.sub Price F1 | Menu.sub Price Number | Menu.unitprice Precision | Menu.unitprice Recall | Menu.unitprice F1 | Menu.unitprice Number | Sub Total.discount Price Precision | Sub Total.discount Price Recall | Sub Total.discount Price F1 | Sub Total.discount Price Number | Sub Total.etc Precision | Sub Total.etc Recall | Sub Total.etc F1 | Sub Total.etc Number | Sub Total.service Price Precision | Sub Total.service Price Recall | Sub Total.service Price F1 | Sub Total.service Price Number | Sub Total.subtotal Price Precision | Sub Total.subtotal Price Recall | Sub Total.subtotal Price F1 | Sub Total.subtotal Price Number | Sub Total.tax Price Precision | Sub Total.tax Price Recall | Sub Total.tax Price F1 | Sub Total.tax Price Number | Total.cashprice Precision | Total.cashprice Recall | Total.cashprice F1 | Total.cashprice Number | Total.changeprice Precision | Total.changeprice Recall | Total.changeprice F1 | Total.changeprice Number | Total.creditcardprice Precision | Total.creditcardprice Recall | Total.creditcardprice F1 | Total.creditcardprice Number | Total.emoneyprice Precision | Total.emoneyprice Recall | Total.emoneyprice F1 | Total.emoneyprice Number | Total.menuqty Cnt Precision | Total.menuqty Cnt Recall | Total.menuqty Cnt F1 | Total.menuqty Cnt Number | Total.menutype Cnt Precision | Total.menutype Cnt Recall | Total.menutype Cnt F1 | Total.menutype Cnt Number | Total.total Etc Precision | Total.total Etc Recall | Total.total Etc F1 | Total.total Etc Number | Total.total Price Precision | Total.total Price Recall | Total.total Price F1 | Total.total Price Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------------:|:-------------------------:|:---------------------:|:-------------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:-----------------:|:--------------:|:----------:|:--------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------------------------:|:-------------------------------:|:---------------------------:|:-------------------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:---------------------------------:|:------------------------------:|:--------------------------:|:------------------------------:|:----------------------------------:|:-------------------------------:|:---------------------------:|:-------------------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:-------------------------------:|:----------------------------:|:------------------------:|:----------------------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:----------------------------:|:-------------------------:|:---------------------:|:-------------------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:---------------------------:|:------------------------:|:--------------------:|:------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 2.0 | 250 | 2.5018 | 0.85 | 0.9822 | 0.9113 | 225 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.8257 | 1.0 | 0.9045 | 251 | 0.0 | 0.0 | 0.0 | 11 | 0.8746 | 0.9839 | 0.9260 | 248 | 0.0 | 0.0 | 0.0 | 17 | 0.0 | 0.0 | 0.0 | 37 | 0.0 | 0.0 | 0.0 | 20 | 0.9296 | 0.9565 | 0.9429 | 69 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 12 | 0.8108 | 0.8696 | 0.8392 | 69 | 0.4719 | 0.8936 | 0.6176 | 47 | 0.7683 | 0.875 | 0.8182 | 72 | 0.8 | 0.8814 | 0.8387 | 59 | 0.0 | 0.0 | 0.0 | 17 | 0.0 | 0.0 | 0.0 | 2 | 0.4138 | 0.4138 | 0.4138 | 29 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.7323 | 0.9208 | 0.8158 | 101 | 0.7983 | 0.8263 | 0.8121 | 0.8255 |
| 2.6537 | 4.0 | 500 | 1.3952 | 0.8805 | 0.9822 | 0.9286 | 225 | 0.7273 | 0.8 | 0.7619 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.8817 | 0.9801 | 0.9283 | 251 | 1.0 | 1.0 | 1.0 | 11 | 0.8547 | 0.9960 | 0.9199 | 248 | 0.0 | 0.0 | 0.0 | 17 | 0.4444 | 0.1081 | 0.1739 | 37 | 0.0 | 0.0 | 0.0 | 20 | 0.8608 | 0.9855 | 0.9189 | 69 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 13 | 0.3438 | 0.9167 | 0.5 | 12 | 0.8919 | 0.9565 | 0.9231 | 69 | 0.88 | 0.9362 | 0.9072 | 47 | 1.0 | 0.875 | 0.9333 | 72 | 0.9483 | 0.9322 | 0.9402 | 59 | 0.6522 | 0.8824 | 0.75 | 17 | 0.0 | 0.0 | 0.0 | 2 | 0.8286 | 1.0 | 0.9062 | 29 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9684 | 0.9109 | 0.9388 | 101 | 0.8632 | 0.8832 | 0.8731 | 0.8947 |
| 2.6537 | 6.0 | 750 | 0.7646 | 0.9170 | 0.9822 | 0.9485 | 225 | 0.5556 | 0.5 | 0.5263 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9537 | 0.9841 | 0.9686 | 251 | 1.0 | 1.0 | 1.0 | 11 | 0.9385 | 0.9839 | 0.9606 | 248 | 0.0 | 0.0 | 0.0 | 17 | 0.8 | 0.8649 | 0.8312 | 37 | 1.0 | 0.55 | 0.7097 | 20 | 0.9306 | 0.9710 | 0.9504 | 69 | 0.75 | 0.8571 | 0.8000 | 7 | 0.6667 | 0.7692 | 0.7143 | 13 | 0.8571 | 1.0 | 0.9231 | 12 | 0.9067 | 0.9855 | 0.9444 | 69 | 0.9787 | 0.9787 | 0.9787 | 47 | 1.0 | 0.9167 | 0.9565 | 72 | 0.9516 | 1.0 | 0.9752 | 59 | 0.7619 | 0.9412 | 0.8421 | 17 | 0.0 | 0.0 | 0.0 | 2 | 0.7632 | 1.0 | 0.8657 | 29 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.97 | 0.9604 | 0.9652 | 101 | 0.9244 | 0.9334 | 0.9289 | 0.9435 |
| 0.8368 | 8.0 | 1000 | 0.4986 | 0.9567 | 0.9822 | 0.9693 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9764 | 0.9880 | 0.9822 | 251 | 0.7333 | 1.0 | 0.8462 | 11 | 0.9648 | 0.9960 | 0.9802 | 248 | 1.0 | 0.6471 | 0.7857 | 17 | 0.8718 | 0.9189 | 0.8947 | 37 | 1.0 | 0.85 | 0.9189 | 20 | 0.9718 | 1.0 | 0.9857 | 69 | 0.5556 | 0.7143 | 0.6250 | 7 | 0.8889 | 0.6154 | 0.7273 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.8831 | 0.9855 | 0.9315 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.8889 | 0.9412 | 72 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.5333 | 0.9412 | 0.6809 | 17 | 0.0 | 0.0 | 0.0 | 2 | 0.8056 | 1.0 | 0.8923 | 29 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9694 | 0.9406 | 0.9548 | 101 | 0.9420 | 0.9484 | 0.9452 | 0.9520 |
| 0.8368 | 10.0 | 1250 | 0.3597 | 0.9528 | 0.9867 | 0.9694 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9688 | 0.9880 | 0.9783 | 251 | 0.7333 | 1.0 | 0.8462 | 11 | 0.9462 | 0.9919 | 0.9685 | 248 | 1.0 | 0.5294 | 0.6923 | 17 | 0.825 | 0.8919 | 0.8571 | 37 | 1.0 | 0.65 | 0.7879 | 20 | 0.9718 | 1.0 | 0.9857 | 69 | 1.0 | 1.0 | 1.0 | 7 | 0.8667 | 1.0 | 0.9286 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9324 | 1.0 | 0.9650 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.9306 | 0.9640 | 72 | 0.9516 | 1.0 | 0.9752 | 59 | 0.8889 | 0.9412 | 0.9143 | 17 | 0.25 | 0.5 | 0.3333 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9898 | 0.9604 | 0.9749 | 101 | 0.9524 | 0.9581 | 0.9552 | 0.9660 |
| 0.3287 | 12.0 | 1500 | 0.3021 | 0.9864 | 0.9644 | 0.9753 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9839 | 0.9761 | 0.98 | 251 | 0.7333 | 1.0 | 0.8462 | 11 | 0.9755 | 0.9637 | 0.9696 | 248 | 0.7727 | 1.0 | 0.8718 | 17 | 0.7556 | 0.9189 | 0.8293 | 37 | 0.7917 | 0.95 | 0.8636 | 20 | 0.9855 | 0.9855 | 0.9855 | 69 | 1.0 | 1.0 | 1.0 | 7 | 0.8667 | 1.0 | 0.9286 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.8947 | 0.9855 | 0.9379 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.9306 | 0.9640 | 72 | 0.9516 | 1.0 | 0.9752 | 59 | 0.8889 | 0.9412 | 0.9143 | 17 | 0.5 | 1.0 | 0.6667 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9802 | 0.9802 | 0.9802 | 101 | 0.9553 | 0.9588 | 0.9570 | 0.9652 |
| 0.3287 | 14.0 | 1750 | 0.2756 | 0.9825 | 0.9956 | 0.9890 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9650 | 0.9880 | 0.9764 | 251 | 0.9167 | 1.0 | 0.9565 | 11 | 0.9762 | 0.9919 | 0.9840 | 248 | 1.0 | 0.8824 | 0.9375 | 17 | 0.8889 | 0.8649 | 0.8767 | 37 | 0.95 | 0.95 | 0.9500 | 20 | 0.9855 | 0.9855 | 0.9855 | 69 | 0.875 | 1.0 | 0.9333 | 7 | 0.9091 | 0.7692 | 0.8333 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9189 | 0.9855 | 0.9510 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.9306 | 0.9640 | 72 | 0.9516 | 1.0 | 0.9752 | 59 | 0.9412 | 0.9412 | 0.9412 | 17 | 0.3333 | 0.5 | 0.4 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9612 | 0.9802 | 0.9706 | 101 | 0.9648 | 0.9656 | 0.9652 | 0.9656 |
| 0.1835 | 16.0 | 2000 | 0.2440 | 0.9955 | 0.9867 | 0.9911 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9688 | 0.9880 | 0.9783 | 251 | 0.9167 | 1.0 | 0.9565 | 11 | 0.9762 | 0.9919 | 0.9840 | 248 | 0.85 | 1.0 | 0.9189 | 17 | 0.8684 | 0.8919 | 0.88 | 37 | 1.0 | 0.95 | 0.9744 | 20 | 0.9853 | 0.9710 | 0.9781 | 69 | 1.0 | 1.0 | 1.0 | 7 | 0.9286 | 1.0 | 0.9630 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9444 | 0.9855 | 0.9645 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 0.9851 | 0.9167 | 0.9496 | 72 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9412 | 0.9412 | 0.9412 | 17 | 0.4 | 1.0 | 0.5714 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9712 | 1.0 | 0.9854 | 101 | 0.9679 | 0.9693 | 0.9686 | 0.9720 |
| 0.1835 | 18.0 | 2250 | 0.2300 | 0.9912 | 0.9956 | 0.9933 | 225 | 0.8 | 0.8 | 0.8000 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9764 | 0.9880 | 0.9822 | 251 | 0.7857 | 1.0 | 0.88 | 11 | 0.9762 | 0.9919 | 0.9840 | 248 | 0.9444 | 1.0 | 0.9714 | 17 | 0.8205 | 0.8649 | 0.8421 | 37 | 0.95 | 0.95 | 0.9500 | 20 | 0.9855 | 0.9855 | 0.9855 | 69 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.9231 | 0.9231 | 0.9231 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9577 | 0.9855 | 0.9714 | 69 | 1.0 | 1.0 | 1.0 | 47 | 1.0 | 0.9028 | 0.9489 | 72 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9412 | 0.9412 | 0.9412 | 17 | 0.1667 | 0.5 | 0.25 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9709 | 0.9901 | 0.9804 | 101 | 0.9628 | 0.9678 | 0.9653 | 0.9690 |
| 0.1239 | 20.0 | 2500 | 0.2151 | 1.0 | 0.9867 | 0.9933 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9724 | 0.9841 | 0.9782 | 251 | 0.8462 | 1.0 | 0.9167 | 11 | 0.98 | 0.9879 | 0.9839 | 248 | 0.85 | 1.0 | 0.9189 | 17 | 0.85 | 0.9189 | 0.8831 | 37 | 0.8636 | 0.95 | 0.9048 | 20 | 0.9855 | 0.9855 | 0.9855 | 69 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.9231 | 0.9231 | 0.9231 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9444 | 0.9855 | 0.9645 | 69 | 1.0 | 0.9787 | 0.9892 | 47 | 1.0 | 0.9167 | 0.9565 | 72 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9412 | 0.9412 | 0.9412 | 17 | 0.1667 | 0.5 | 0.25 | 2 | 1.0 | 0.9655 | 0.9825 | 29 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9709 | 0.9901 | 0.9804 | 101 | 0.9620 | 0.9663 | 0.9642 | 0.9690 |
| 0.1239 | 22.0 | 2750 | nan | 1.0 | 0.9778 | 0.9888 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9723 | 0.9801 | 0.9762 | 251 | 0.8462 | 1.0 | 0.9167 | 11 | 0.9721 | 0.9839 | 0.9780 | 248 | 0.85 | 1.0 | 0.9189 | 17 | 0.8611 | 0.8378 | 0.8493 | 37 | 0.95 | 0.95 | 0.9500 | 20 | 0.9851 | 0.9565 | 0.9706 | 69 | 0.8333 | 0.7143 | 0.7692 | 7 | 0.9231 | 0.9231 | 0.9231 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9710 | 0.9710 | 0.9710 | 69 | 1.0 | 1.0 | 1.0 | 47 | 1.0 | 0.9028 | 0.9489 | 72 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 0.9412 | 0.9697 | 17 | 0.1667 | 0.5 | 0.25 | 2 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 0.8571 | 0.9231 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9706 | 0.9802 | 0.9754 | 101 | 0.9624 | 0.9573 | 0.9598 | 0.9575 |
| 0.1008 | 24.0 | 3000 | 0.2207 | 1.0 | 0.9867 | 0.9933 | 225 | 0.8889 | 0.8 | 0.8421 | 10 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 6 | 0.9764 | 0.9880 | 0.9822 | 251 | 0.8462 | 1.0 | 0.9167 | 11 | 0.9723 | 0.9919 | 0.9820 | 248 | 0.85 | 1.0 | 0.9189 | 17 | 0.8421 | 0.8649 | 0.8533 | 37 | 0.95 | 0.95 | 0.9500 | 20 | 0.9855 | 0.9855 | 0.9855 | 69 | 0.8571 | 0.8571 | 0.8571 | 7 | 0.9231 | 0.9231 | 0.9231 | 13 | 1.0 | 1.0 | 1.0 | 12 | 0.9714 | 0.9855 | 0.9784 | 69 | 1.0 | 1.0 | 1.0 | 47 | 1.0 | 0.9167 | 0.9565 | 72 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9412 | 0.9697 | 17 | 0.1667 | 0.5 | 0.25 | 2 | 0.9667 | 1.0 | 0.9831 | 29 | 1.0 | 0.7143 | 0.8333 | 7 | 0.0 | 0.0 | 0.0 | 4 | 0.9709 | 0.9901 | 0.9804 | 101 | 0.9627 | 0.9671 | 0.9649 | 0.9690 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.10.0+cu111
- Datasets 2.4.0
- Tokenizers 0.12.1
|