File size: 14,575 Bytes
fe7c483 bc6270a fe7c483 062a60f fe7c483 bc6270a fe7c483 062a60f fe7c483 062a60f fe7c483 062a60f fe7c483 062a60f fe7c483 062a60f fe7c483 bc6270a fe7c483 062a60f fe7c483 062a60f fe7c483 062a60f bc6270a 062a60f bc6270a 062a60f bc6270a 062a60f bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a fe7c483 bc6270a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
from functools import lru_cache
from typing import Any, Dict, List, Optional, Tuple
import torch
from transformers import PreTrainedTokenizer
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
# Taken from
# https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
@lru_cache()
def bytes_to_unicode():
"""Returns list of utf-8 byte and a mapping to unicode strings.
We specifically avoids mapping to whitespace/control characters the bpe code
barfs on.
The reversible bpe codes work on unicode strings. This means you need a
large # of unicode characters in your vocab if you want to avoid UNKs. When
you're at something like a 10B token dataset you end up needing around 5K
for decent coverage. This is a significant percentage of your normal, say,
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
unicode strings.
"""
bs = (list(range(ord('!'),
ord('~') + 1)) + list(range(ord('¡'),
ord('¬') + 1)) +
list(range(ord('®'),
ord('ÿ') + 1)))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
tokenizers.
See HuggingFace for further documentation on general tokenizer methods.
"""
model_input_names = ['input_ids', 'attention_mask']
def __init__(self,
model_name: Optional[str] = None,
encoding_name: Optional[str] = None,
add_bos_token: bool = False,
add_eos_token: bool = False,
use_default_system_prompt: bool = False,
unk_token: Optional[str] = '<|endoftext|>',
eos_token: Optional[str] = '<|endoftext|>',
bos_token: Optional[str] = '<|endoftext|>',
pad_token: Optional[str] = None,
**kwargs: Any):
"""Constructor creates a tiktoken tokenizer to use as the underlying.
tokenizer.
Args:
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
Either model_name or encoding_name must be set, but not both.
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
Either model_name or encoding_name must be set, but not both.
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
pad_token (Optional[str], optional): The pad token. Defaults to None.
"""
try:
import tiktoken
except:
raise ImportError(
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
# Workaround to make tiktokenizer picklable.
# https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
# There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
import copyreg
import functools
from tiktoken import Encoding # type: ignore (thirdParty)
def pickle_Encoding(enc: Encoding):
return (functools.partial(Encoding,
enc.name,
pat_str=enc._pat_str,
mergeable_ranks=enc._mergeable_ranks,
special_tokens=enc._special_tokens), ())
copyreg.pickle(Encoding, pickle_Encoding)
if model_name is not None and encoding_name is not None:
raise ValueError(
'You need to specify either model_name or encoding_name, not both.'
)
self.model_name = model_name
self.encoding_name = encoding_name
if self.model_name is not None:
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
self.model_name)
elif self.encoding_name is not None:
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
self.encoding_name)
else:
raise ValueError(
'You need to specify either model_name or encoding_name.')
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.decoder = {}
for i in range(self.encoding.n_vocab):
try:
self.encoding.decode_single_token_bytes(i)
except KeyError:
continue
# Taken from
# https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
decoding = ''.join([
bytes_to_unicode()[ord(char)] for char in
self.encoding.decode_single_token_bytes(i).decode('latin-1')
])
self.decoder[i] = decoding
self.encoder = {}
for i in range(self.encoding.n_vocab):
if i in self.decoder:
self.encoder[self.decoder[i]] = i
super().__init__(model_name=model_name,
encoding_name=encoding_name,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
use_default_system_prompt=use_default_system_prompt,
unk_token=unk_token,
eos_token=eos_token,
bos_token=bos_token,
pad_token=pad_token,
**kwargs)
@property
def vocab_size(self) -> int:
"""Returns vocab size."""
return self.encoding.n_vocab
@property
def is_fast(self) -> bool:
return False
@property
def default_chat_template(self):
"""Chat ML Template for User/Assistant.
Pinning default Chat ML template in case defaults change.
"""
template = (
"{% set system_message = '' %}"
'{% if USE_DEFAULT_PROMPT == true %}'
"{{'<|im_start|>system\n' + 'DEFAULT_SYSTEM_PROMPT'}}"
'{% endif %}'
'{% for message in messages %}'
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
'{% endfor %}')
template = template.replace(
'USE_DEFAULT_PROMPT',
'true' if self.use_default_system_prompt else 'false')
template = template.replace('DEFAULT_SYSTEM_PROMPT',
DEFAULT_SYSTEM_PROMPT)
return template
def get_vocab(self) -> Dict[str, int]:
"""Returns vocab as a dict.
Note: This function does not work properly due to difference in assumptions between tiktoken and Hugging Face tokenizers.
Most uses do not need to use get_vocab, so this is not a priority to fix.
"""
# As far as I can tell, we don't require get_vocab to completely work,
# but when using additional_special_tokens, Hugging Face determines the next
# token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
vocab_clone = self.encoder.copy()
extra_id_index = 0
candidate_extra_id = f'<extra_id_{extra_id_index}>'
indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
vocab_clone.values())
# Add enough indices to make get_vocab() the right length
for index_to_add in indices_to_fill_in:
# Make sure we don't overwrite a token that already exists
while candidate_extra_id in vocab_clone:
extra_id_index += 1
candidate_extra_id = f'<extra_id_{extra_id_index}>'
# Get an index to add and add the item
vocab_clone[candidate_extra_id] = index_to_add
return vocab_clone
def _tokenize(self, text: str) -> List[str]:
"""Returns a tokenized string."""
if not isinstance(text, str):
raise ValueError(
f'Expected a string input to _tokenize but got {type(text)}.')
tokens = [
self.decoder[t]
for t in self.encoding.encode(text, allowed_special='all')
]
return tokens
def _convert_token_to_id(self, token: str):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index: int):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens: List[str]):
"""Converts a sequence of tokens (string) in a single string."""
text = ''.join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8')
return text
def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False) -> List[int]:
"""Retrieves sequence ids from a token list that has no special tokens.
Function copied from
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
added. This method is called when adding special tokens using the
tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
def create_token_type_ids_from_sequences(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
sep = [self.sep_token_id]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self,
save_directory: str,
filename_prefix: Optional[str] = None) -> Tuple[str]:
# ignore the below type to keep the original signature
# we are knowingly breaking the signature here, although not 100% certain
# it doesn't have side effects
# There is some code in huggingface that calls this function to get the vocab files,
# but it doesn't seem to access them (or at least checks for their existence
# before accessing them)
return (None, None) # type: ignore
def sanitize_special_tokens(self) -> int:
"""Make sure that all the special tokens attributes of the tokenizer.
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
vocabulary.
Add the missing ones to the vocabulary if needed.
Return:
`int`: The number of tokens added in the vocabulary during the operation.
"""
actual_new_tokens = []
for token in self.all_special_tokens_extended:
encoded = self.encoding.encode(token, allowed_special='all')
if len(encoded) > 1:
actual_new_tokens.append(token)
return self.add_tokens(actual_new_tokens, special_tokens=True)
def construct_logit_tensor(self, logprobs: Dict[str,
float]) -> torch.Tensor:
"""Construct tensor of shape (vocab_size,) mapping words to logprobs.
Args:
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model.
"""
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size))
for k in logprobs:
encoding = self(k)['input_ids']
idx = encoding[0]
tensor[idx] = logprobs[k]
return tensor
TiktokenTokenizerWrapper.register_for_auto_class() |