File size: 1,973 Bytes
eaf2655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba2693
 
 
 
eaf2655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba2693
 
 
eaf2655
dba2693
 
eaf2655
 
 
 
 
 
 
 
dba2693
 
 
 
 
eaf2655
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-twitter_sentiment_analysis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-twitter_sentiment_analysis

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4113
- F1: 0.7556
- Roc Auc: 0.8165
- Accuracy: 0.7454

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log        | 1.0   | 197  | 0.3564          | 0.7485 | 0.8072  | 0.6981   |
| No log        | 2.0   | 394  | 0.3285          | 0.7686 | 0.8197  | 0.7010   |
| 0.3302        | 3.0   | 591  | 0.3463          | 0.7810 | 0.8315  | 0.7425   |
| 0.3302        | 4.0   | 788  | 0.3806          | 0.7730 | 0.8276  | 0.7496   |
| 0.3302        | 5.0   | 985  | 0.4113          | 0.7556 | 0.8165  | 0.7454   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3