File size: 13,755 Bytes
7511df4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc5e3617eb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc5e3617f40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc5e3628040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc5e36280d0>", "_build": "<function ActorCriticPolicy._build at 0x7cc5e3628160>", "forward": "<function ActorCriticPolicy.forward at 0x7cc5e36281f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc5e3628280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc5e3628310>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc5e36283a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc5e3628430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc5e36284c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc5e3628550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc5e3620f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690092364965885958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMaNX75cwH685WYZu7ToMLnEeto9sXA6OgAAgD8AAIA/ZrCOvOX/tD/4pOq9eQInvm59xrxXx4i9AAAAAAAAAADTNAC+G8EnP8rVpzxpQqm+206rvP2Y0jwAAAAAAAAAAG1jDL6xWc8+msnvPMEchL4qc668MH6GPQAAAAAAAAAAQgyFvsOeFbyqrDk90Xkdvqk/mz3CwCY/AACAPwAAAAAztqs92bp9PxqjIT4MZLa+H7WnPXNyOT0AAAAAAAAAAM2csbwpiDq6tg+dNzN54bAiT5O7Vue2tgAAgD8AAIA/TWogPQEUvj10FAY9jMkNvj8ExjxOvTs8AAAAAAAAAAAg/j6+Tta4vECqXLutEMq5L18pPnL1lToAAIA/AACAPwZsIT5P1Vm826nyOp6wF7lycsS9TrshugAAgD8AAIA/xpcHvvzFxD59E9e9Fuk8vrLNmr2bZeS8AAAAAAAAAAAmJM49uBi5OmOQib6J5AW+QeyHvGV68j4AAIA/AAAAAIAuFr5d8O8+LLI6PST4Wb4indi8TU8ePAAAAAAAAAAAmnUoPHdupT/dVKw90VHwvrT/JTy9v/A6AAAAAAAAAACmGUS+KeclO6hojrFEByyyk6PKvB+rHjEAAIA/AACAP5bPbb6h+ZI9lkKOPSmZFL63lYa8HmrCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAfwMx46faqMAWyUTQ8BjAF0lEdAmpMyUX531XV9lChoBkdAQKpikO7QLWgHS/hoCEdAmpUuYplSTHV9lChoBkdAbWXwcYIjW2gHTSsBaAhHQJqZm0E5hjR1fZQoaAZHQG2agz544ZNoB01CAWgIR0CamcDMNc4YdX2UKGgGR0Br13CCSRr8aAdNZgFoCEdAmppTk6tDD3V9lChoBkdAbpnUMoc7yWgHTWQBaAhHQJqbvdM0xdp1fZQoaAZHQGUChx5s0pFoB03oA2gIR0CanHFWn0kGdX2UKGgGR0ByoMnhKlHjaAdNCQFoCEdAmp2Jha1Ti3V9lChoBkdAbgW+FlCkXWgHTUcBaAhHQJqeBtxdY4h1fZQoaAZHQG7lkFwDNhVoB03vAWgIR0CanyeT3Zf2dX2UKGgGR0Bu7dxffGdaaAdN5QFoCEdAmqAcbaRISXV9lChoBkdAPiU8ifQKKGgHTRoBaAhHQJqh2814xDd1fZQoaAZHQGF4iI1tO21oB03oA2gIR0CaosN+LFXJdX2UKGgGR8AFnNVzZHuraAdNKgFoCEdAmqPgpKBd2XV9lChoBkdAX6zXRPXTVmgHTegDaAhHQJqk9xgiNbV1fZQoaAZHQHAPbRBu4w1oB00pAWgIR0CapXNcGC7LdX2UKGgGR0BTlsfRu0kXaAdN6ANoCEdAmu6NKmKqGXV9lChoBkdAbeInUlRgqmgHTT0BaAhHQJrv9wOvt+l1fZQoaAZHQHDRFl9Sde9oB00nAWgIR0Ca8aI3BHkMdX2UKGgGR0BvBxVCHARDaAdNbAFoCEdAmvMezD4xlHV9lChoBkdAbfuO+7Dl5mgHTY0BaAhHQJrzUuanaWZ1fZQoaAZHQG8pbQ9ic5NoB004AWgIR0Ca82yWRigCdX2UKGgGR0Bt0npW3jMnaAdNEQJoCEdAmvQo3R5TqHV9lChoBkdAcX6J+UhV2mgHTT8BaAhHQJr0YO6NEPV1fZQoaAZHQHBR8bFS88NoB02+AWgIR0Ca9UuuieundX2UKGgGR0BvUjeZXuE3aAdNOwFoCEdAmvWA3T/hl3V9lChoBkdAasMrksBhhGgHTSgBaAhHQJr2o+LWI451fZQoaAZHQHEpYFiay8loB03GAWgIR0Ca98LxqfvndX2UKGgGR0BtdRGnXNC7aAdNPgFoCEdAmvjqpgkTpXV9lChoBkdAb0KwblzU7WgHTWwBaAhHQJr6NKHwgDB1fZQoaAZHQHAlHLq2SdRoB00gAWgIR0Ca+lr+YMOPdX2UKGgGR8ApwVObiIcjaAdNAwFoCEdAmvpvXbuc+nV9lChoBkdAb0UfwqiGnGgHTdkBaAhHQJr8Cx9oexR1fZQoaAZHQG92K94/u9hoB00cAWgIR0Ca/Mp9qk/KdX2UKGgGR0BwRlFz+3pfaAdNKgFoCEdAmwBzGDL8rXV9lChoBkdAa0iVKwpvxmgHTTwBaAhHQJsAgIyCWeJ1fZQoaAZHQHAR+qWC2+hoB01fAWgIR0CbAg2Yv38GdX2UKGgGR0A1cnHvMKTjaAdNCgFoCEdAmwJEcfeUIXV9lChoBkdAb9xvaURnOGgHTT0BaAhHQJsC5jmSyMV1fZQoaAZHQHEGV7MPjGVoB010AWgIR0CbBJvIfbKzdX2UKGgGR0BwrBQ9A5aNaAdNGgFoCEdAmwZRbwBo3HV9lChoBkdAb184ffXPJWgHTTwBaAhHQJsGZjWkJrt1fZQoaAZHQB4icXm/339oB00nAWgIR0CbCJTINmUXdX2UKGgGR0BvW/HLidauaAdNJwFoCEdAmwioJiRW93V9lChoBkdAcIvdZq20A2gHTSABaAhHQJsKsvlEJBx1fZQoaAZHQHDlX0Gu9vloB01EAmgIR0CbDHaCtihGdX2UKGgGR0BwXnyf+S8raAdNMQFoCEdAmw5UALiMpHV9lChoBkdAYYIxRl6JImgHTegDaAhHQJsPRRuTA311fZQoaAZHQG8DeenQ6ZJoB00uAWgIR0CbD8PuogmrdX2UKGgGR0BweIAo5PuYaAdNGwFoCEdAmxD4vrWy1XV9lChoBkdAcZDzF+/gzmgHTVgBaAhHQJsRYo9cKPZ1fZQoaAZHQHErcE7nxKBoB01SAWgIR0CbEdFYuCf6dX2UKGgGR0A0WixmkFfRaAdNEwFoCEdAmxH6xkd3jnV9lChoBkdAcHeMkyDZlGgHTSYBaAhHQJsSldhRZU11fZQoaAZHQGw5GY8dPtVoB02+AWgIR0CbFAN83MpxdX2UKGgGR0BwY9MEidJ8aAdNKwFoCEdAmxSO1OTJQ3V9lChoBkdAcT1t6HCXQmgHTUABaAhHQJsXbeHi3od1fZQoaAZHQB/F9Brvb49oB0v5aAhHQJsYDNmlImR1fZQoaAZHQG5BMhHLA59oB02dAmgIR0CbGUgccU/OdX2UKGgGR0BtJLuIAOriaAdNUwFoCEdAmxoVSbYsd3V9lChoBkdAbDsrNnoPkWgHTTABaAhHQJsb4Tg2qDN1fZQoaAZHQHACnjABT4toB00/AWgIR0CbHBq+ajN7dX2UKGgGR0Bw9MkHD766aAdNFgFoCEdAmx0VUADJVHV9lChoBkdAcKs0JWvKU2gHTSwBaAhHQJsd1C2MKkV1fZQoaAZHQG8tww0waitoB01CAWgIR0CbH8J2t+1CdX2UKGgGR0BvEP7Lt/nXaAdNbgFoCEdAmx/PaHsTnXV9lChoBkdAYeN89fTkQ2gHTegDaAhHQJsgFwzch1V1fZQoaAZHQGtVCGWUr09oB000AWgIR0CbINDM/yG0dX2UKGgGR0BuL6oIfKZEaAdNfgJoCEdAmyKiPMjeK3V9lChoBkdAcZbWKdhAnmgHTRwBaAhHQJskBeKKpDN1fZQoaAZHQHBQXoHLRrtoB001AWgIR0CbJHV/MGHIdX2UKGgGR0BjpFQhwEQoaAdN6ANoCEdAmyUUzGgi/3V9lChoBkdAbttGPxQSBmgHTUwBaAhHQJsoOWszVMF1fZQoaAZHQGqT464lQdloB001AmgIR0CbKHn3ta6jdX2UKGgGR0BwWmUaAFxGaAdNMAFoCEdAmyjmGZeAu3V9lChoBkdAcMsAAQxvemgHTSQBaAhHQJsqIl6Z6Ut1fZQoaAZHQGxtrHMlkYpoB005AWgIR0CbKkcvugHvdX2UKGgGR0BwjtuwX668aAdNFQFoCEdAmytPNmlImXV9lChoBkdAbWq5y2hIv2gHTSgBaAhHQJssE5Jbt7d1fZQoaAZHQHDCjcqOLixoB00wAWgIR0CbLKuzhP0qdX2UKGgGR0BwRou27Wd3aAdNowFoCEdAmy1j2FnIyXV9lChoBkdAcYbOnEVFhGgHTXwBaAhHQJswx/4Irvt1fZQoaAZHQG+j19v0h/1oB00iAWgIR0CbMgOnEVFhdX2UKGgGR0BwUNwT/Q0GaAdNRQFoCEdAmzM0JKJ2uHV9lChoBkdAcIq/iYLLIWgHTVYBaAhHQJszkbn5i3J1fZQoaAZHQG3EeaKDTSdoB003AWgIR0CbN7IoVmBfdX2UKGgGR0Bx6NMi8nNQaAdNJgFoCEdAmzk+Yx+KCXV9lChoBke/0JR0lqrR0GgHTRoBaAhHQJs6OjtXxON1fZQoaAZHQHH7cDbJwKloB015AWgIR0CbO3wsGxD9dX2UKGgGR0Bxs6KZUkv9aAdNVQFoCEdAmzvOHWSU1XV9lChoBkdAcUzSv1UVBWgHTUQBaAhHQJs9HVG0/np1fZQoaAZHQHCnyWAwwkBoB004AWgIR0CbPTuanaWYdX2UKGgGR0BwEiSq2jO+aAdNPQFoCEdAmz4xBNVR13V9lChoBkdAa8jos7MgU2gHTSkBaAhHQJtBk2Q4jr11fZQoaAZHQG6DSZSeiBZoB00YAWgIR0CbQa9r433pdX2UKGgGR0BiQBa9sabXaAdN6ANoCEdAm0IRMajveHV9lChoBkdAb07eSjgydmgHTT4BaAhHQJtDhJnQID51fZQoaAZHQG7eDtw71ZloB00pAWgIR0CbRaMZP2wndX2UKGgGR0BvU05n13+uaAdNMwFoCEdAm0c+bd8ArHV9lChoBkdAYYLSrHU+cGgHTegDaAhHQJtHXAAQxvh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}