File size: 1,904 Bytes
e789983
f6c189e
9a614c5
f6c189e
 
 
 
 
 
 
 
516516a
f6c189e
9202e3a
 
 
 
 
 
 
e789983
 
f6c189e
 
e789983
f6c189e
e789983
9202e3a
f6c189e
 
9a614c5
 
 
 
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
e789983
f6c189e
 
 
 
 
 
 
 
e789983
f6c189e
e789983
f6c189e
 
9a614c5
 
 
e789983
 
f6c189e
e789983
f6c189e
 
 
9202e3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: dslim/bert-large-NER
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Adam-NER-Model
  results: []
datasets:
- conll2003
- rungalileo/mit_movies
- hyperhustle/ner-dataset
language:
- en
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner-adam

This model is a fine-tuned version of [dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) on an [hyperhustle/ner-dataset](https://huggingface.co/datasets/hyperhustle/ner-dataset) dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8845
- Recall: 0.8749
- F1: 0.8797
- Accuracy: 0.9646

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0949        | 1.0   | 3080 | nan             | 0.8914    | 0.8942 | 0.8928 | 0.9663   |
| 0.0574        | 2.0   | 6160 | nan             | 0.8763    | 0.8784 | 0.8773 | 0.9635   |
| 0.0376        | 3.0   | 9240 | nan             | 0.8845    | 0.8749 | 0.8797 | 0.9646   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2