File size: 2,982 Bytes
d993ffc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: EGY1.5K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# EGY1.5K
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4590
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5688 | 1.48 | 100 | 0.5112 |
| 0.5301 | 2.96 | 200 | 0.4908 |
| 0.5023 | 4.44 | 300 | 0.4707 |
| 0.524 | 5.93 | 400 | 0.4797 |
| 0.5001 | 7.41 | 500 | 0.4712 |
| 0.4774 | 8.89 | 600 | 0.4690 |
| 0.4793 | 10.37 | 700 | 0.4627 |
| 0.4666 | 11.85 | 800 | 0.4657 |
| 0.4649 | 13.33 | 900 | 0.4599 |
| 0.4659 | 14.81 | 1000 | 0.4616 |
| 0.4557 | 16.3 | 1100 | 0.4532 |
| 0.4516 | 17.78 | 1200 | 0.4535 |
| 0.4489 | 19.26 | 1300 | 0.4572 |
| 0.4431 | 20.74 | 1400 | 0.4504 |
| 0.4488 | 22.22 | 1500 | 0.4543 |
| 0.4452 | 23.7 | 1600 | 0.4557 |
| 0.4386 | 25.19 | 1700 | 0.4549 |
| 0.4297 | 26.67 | 1800 | 0.4487 |
| 0.4327 | 28.15 | 1900 | 0.4559 |
| 0.425 | 29.63 | 2000 | 0.4572 |
| 0.4251 | 31.11 | 2100 | 0.4531 |
| 0.4295 | 32.59 | 2200 | 0.4500 |
| 0.4258 | 34.07 | 2300 | 0.4561 |
| 0.4222 | 35.56 | 2400 | 0.4550 |
| 0.4119 | 37.04 | 2500 | 0.4569 |
| 0.4208 | 38.52 | 2600 | 0.4573 |
| 0.4145 | 40.0 | 2700 | 0.4568 |
| 0.4215 | 41.48 | 2800 | 0.4585 |
| 0.4141 | 42.96 | 2900 | 0.4594 |
| 0.4136 | 44.44 | 3000 | 0.4590 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu118
- Datasets 3.0.0
- Tokenizers 0.15.2
|