File size: 1,631 Bytes
2c08911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d50cb
 
2c08911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d50cb
2c08911
 
 
 
 
b8d50cb
 
 
 
2c08911
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-finetuned-ucf101-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1179
- Accuracy: 0.9754

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 184

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.4232        | 0.2554 | 47   | 0.9096          | 0.6523   |
| 0.0693        | 1.2554 | 94   | 0.0388          | 0.9862   |
| 0.0005        | 2.2554 | 141  | 0.1113          | 0.9769   |
| 0.0005        | 3.2337 | 184  | 0.1179          | 0.9754   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1