File size: 2,288 Bytes
616cc03 bb674e3 616cc03 90d91bc 616cc03 90d91bc bb674e3 616cc03 bb674e3 90d91bc bb674e3 616cc03 90d91bc 616cc03 90d91bc 616cc03 90d91bc 616cc03 40ab868 616cc03 9a75ba3 616cc03 90d91bc 616cc03 f0f0ee4 3b304d8 616cc03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- ar
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- zolfa
metrics:
- wer
model-index:
- name: Zolfa-raghadomar
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Zolfa Dataset
type: zolfa
args: 'config: ar, split: test'
metrics:
- type: wer
value: 8.571428571428571
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Zolfa-raghadomar
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Zolfa Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2371
- Wer: 8.5714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0671 | 0.6993 | 100 | 0.2041 | 12.8571 |
| 0.0247 | 1.3986 | 200 | 0.2290 | 10.4082 |
| 0.0071 | 2.0979 | 300 | 0.2219 | 9.7959 |
| 0.0102 | 2.7972 | 400 | 0.2215 | 26.9388 |
| 0.0046 | 3.4965 | 500 | 0.2192 | 8.5714 |
| 0.005 | 4.1958 | 600 | 0.2401 | 9.1837 |
| 0.0074 | 4.8951 | 700 | 0.2296 | 7.9592 |
| 0.0006 | 5.5944 | 800 | 0.2363 | 9.1837 |
| 0.0002 | 6.2937 | 900 | 0.2366 | 8.5714 |
| 0.0013 | 6.9930 | 1000 | 0.2371 | 8.5714 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|