File size: 33,956 Bytes
f7499c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b071df7
 
f7499c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5deac87
f7499c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1caa5
f7499c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from transformers import PreTrainedModel, VisionEncoderDecoderModel, ViTMAEModel, ConditionalDetrModel
from transformers.models.conditional_detr.modeling_conditional_detr import (
    ConditionalDetrMLPPredictionHead, 
    ConditionalDetrModelOutput,
    ConditionalDetrHungarianMatcher,
    inverse_sigmoid,
)
from .configuration_magiv2 import Magiv2Config
from .processing_magiv2 import Magiv2Processor
from torch import nn
from typing import Optional, List
import torch
from einops import rearrange, repeat
from .utils import move_to_device, visualise_single_image_prediction, sort_panels, sort_text_boxes_in_reading_order
from transformers.image_transforms import center_to_corners_format
from .utils import UnionFind, sort_panels, sort_text_boxes_in_reading_order
import pulp
import scipy
import numpy as np

class Magiv2Model(PreTrainedModel):
    config_class = Magiv2Config

    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.processor = Magiv2Processor(config)
        if not config.disable_ocr:
            self.ocr_model = VisionEncoderDecoderModel(config.ocr_model_config)
        if not config.disable_crop_embeddings:
            self.crop_embedding_model = ViTMAEModel(config.crop_embedding_model_config)
        if not config.disable_detections:
            self.num_non_obj_tokens = 5
            self.detection_transformer = ConditionalDetrModel(config.detection_model_config)
            self.bbox_predictor = ConditionalDetrMLPPredictionHead(
                input_dim=config.detection_model_config.d_model,
                hidden_dim=config.detection_model_config.d_model,
                output_dim=4, num_layers=3
            )
            self.character_character_matching_head = ConditionalDetrMLPPredictionHead(
                input_dim = 3 * config.detection_model_config.d_model + (2 * config.crop_embedding_model_config.hidden_size if not config.disable_crop_embeddings else 0),
                hidden_dim=config.detection_model_config.d_model,
                output_dim=1, num_layers=3
            )
            self.text_character_matching_head = ConditionalDetrMLPPredictionHead(
                input_dim = 3 * config.detection_model_config.d_model,
                hidden_dim=config.detection_model_config.d_model,
                output_dim=1, num_layers=3
            )
            self.text_tail_matching_head = ConditionalDetrMLPPredictionHead(
                input_dim = 2 * config.detection_model_config.d_model,
                hidden_dim=config.detection_model_config.d_model,
                output_dim=1, num_layers=3
            )
            self.class_labels_classifier = nn.Linear(
                config.detection_model_config.d_model, config.detection_model_config.num_labels
            )
            self.is_this_text_a_dialogue = nn.Linear(
                config.detection_model_config.d_model, 1
            )
            self.matcher = ConditionalDetrHungarianMatcher(
                class_cost=config.detection_model_config.class_cost,
                bbox_cost=config.detection_model_config.bbox_cost,
                giou_cost=config.detection_model_config.giou_cost
            )

    def move_to_device(self, input):
        return move_to_device(input, self.device)
    
    @torch.no_grad()
    def do_chapter_wide_prediction(self, pages_in_order, character_bank, eta=0.75, batch_size=8, use_tqdm=False, do_ocr=True):
        texts = []
        characters = []
        character_clusters = []
        if use_tqdm:
            from tqdm import tqdm
            iterator = tqdm(range(0, len(pages_in_order), batch_size))
        else:
            iterator = range(0, len(pages_in_order), batch_size)
        per_page_results = []
        for i in iterator:
            pages = pages_in_order[i:i+batch_size]
            results = self.predict_detections_and_associations(pages)
            per_page_results.extend([result for result in results])

        texts = [result["texts"] for result in per_page_results]
        characters = [result["characters"] for result in per_page_results]
        character_clusters = [result["character_cluster_labels"] for result in per_page_results]
        assigned_character_names = self.assign_names_to_characters(pages_in_order, characters, character_bank, character_clusters, eta=eta)
        if do_ocr:
            ocr = self.predict_ocr(pages_in_order, texts, use_tqdm=use_tqdm)
        offset_characters = 0
        iteration_over = zip(per_page_results, ocr) if do_ocr else per_page_results
        for iter in iteration_over:
            if do_ocr:
                result, ocr_for_page = iter
                result["ocr"] = ocr_for_page
            else:
                result = iter
            result["character_names"] = assigned_character_names[offset_characters:offset_characters + len(result["characters"])]
            offset_characters += len(result["characters"])
        return per_page_results
        
    
    def assign_names_to_characters(self, images, character_bboxes, character_bank, character_clusters, eta=0.75):
        if len(character_bank["images"]) == 0:
            return ["Other" for bboxes_for_image in character_bboxes for bbox in bboxes_for_image]
        chapter_wide_char_embeddings = self.predict_crop_embeddings(images, character_bboxes)
        chapter_wide_char_embeddings = torch.cat(chapter_wide_char_embeddings, dim=0)
        chapter_wide_char_embeddings = torch.nn.functional.normalize(chapter_wide_char_embeddings, p=2, dim=1).cpu().numpy()
        # create must-link and cannot link constraints from character_clusters
        must_link = []
        cannot_link = []
        offset = 0
        for clusters_per_image in character_clusters:
            for i in range(len(clusters_per_image)):
                for j in range(i+1, len(clusters_per_image)):
                    if clusters_per_image[i] == clusters_per_image[j]:
                        must_link.append((offset + i, offset + j))
                    else:
                        cannot_link.append((offset + i, offset + j))
            offset += len(clusters_per_image)
        character_bank_for_this_chapter = self.predict_crop_embeddings(character_bank["images"], [[[0, 0, x.shape[1], x.shape[0]]] for x in character_bank["images"]])
        character_bank_for_this_chapter = torch.cat(character_bank_for_this_chapter, dim=0)
        character_bank_for_this_chapter = torch.nn.functional.normalize(character_bank_for_this_chapter, p=2, dim=1).cpu().numpy()
        costs = scipy.spatial.distance.cdist(chapter_wide_char_embeddings, character_bank_for_this_chapter)
        none_of_the_above = eta * np.ones((costs.shape[0],1))
        costs = np.concatenate([costs, none_of_the_above], axis=1)
        sense = pulp.LpMinimize
        num_supply, num_demand = costs.shape
        problem = pulp.LpProblem("Optimal_Transport_Problem", sense)
        x = pulp.LpVariable.dicts("x", ((i, j) for i in range(num_supply) for j in range(num_demand)), cat='Binary')
        # Objective Function to minimize
        problem += pulp.lpSum([costs[i][j] * x[(i, j)] for i in range(num_supply) for j in range(num_demand)])
        # each crop must be assigned to exactly one character
        for i in range(num_supply):
            problem += pulp.lpSum([x[(i, j)] for j in range(num_demand)]) == 1, f"Supply_{i}_Total_Assignment"
        # cannot link constraints
        for j in range(num_demand-1):
            for (s1, s2) in cannot_link:
                problem += x[(s1, j)] + x[(s2, j)] <= 1, f"Exclusion_{s1}_{s2}_Demand_{j}"
        # must link constraints
        for j in range(num_demand):
            for (s1, s2) in must_link:
                problem += x[(s1, j)] - x[(s2, j)] == 0, f"Inclusion_{s1}_{s2}_Demand_{j}"
        problem.solve()
        assignments = []
        for v in problem.variables():
            if v.varValue > 0:
                index, assignment = v.name.split("(")[1].split(")")[0].split(",")
                assignment = assignment[1:]
                assignments.append((int(index), int(assignment)))

        labels = np.zeros(num_supply)
        for i, j in assignments:
            labels[i] = j
        
        return [character_bank["names"][int(i)] if i < len(character_bank["names"]) else "Other" for i in labels]

    
    def predict_detections_and_associations(
            self,
            images,
            move_to_device_fn=None,
            character_detection_threshold=0.3,
            panel_detection_threshold=0.2,
            text_detection_threshold=0.3,
            tail_detection_threshold=0.34,
            character_character_matching_threshold=0.65,
            text_character_matching_threshold=0.35,
            text_tail_matching_threshold=0.3,
            text_classification_threshold=0.5,
        ):
        assert not self.config.disable_detections
        move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn
        
        inputs_to_detection_transformer = self.processor.preprocess_inputs_for_detection(images)
        inputs_to_detection_transformer = move_to_device_fn(inputs_to_detection_transformer)
        
        detection_transformer_output = self._get_detection_transformer_output(**inputs_to_detection_transformer)
        predicted_class_scores, predicted_bboxes = self._get_predicted_bboxes_and_classes(detection_transformer_output)

        original_image_sizes = torch.stack([torch.tensor(img.shape[:2]) for img in images], dim=0).to(predicted_bboxes.device)

        batch_scores, batch_labels = predicted_class_scores.max(-1)
        batch_scores = batch_scores.sigmoid()
        batch_labels = batch_labels.long()
        batch_bboxes = center_to_corners_format(predicted_bboxes)

        # scale the bboxes back to the original image size
        if isinstance(original_image_sizes, List):
            img_h = torch.Tensor([i[0] for i in original_image_sizes])
            img_w = torch.Tensor([i[1] for i in original_image_sizes])
        else:
            img_h, img_w = original_image_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(batch_bboxes.device)
        batch_bboxes = batch_bboxes * scale_fct[:, None, :]
        
        batch_panel_indices = self.processor._get_indices_of_panels_to_keep(batch_scores, batch_labels, batch_bboxes, panel_detection_threshold)
        batch_character_indices = self.processor._get_indices_of_characters_to_keep(batch_scores, batch_labels, batch_bboxes, character_detection_threshold)
        batch_text_indices = self.processor._get_indices_of_texts_to_keep(batch_scores, batch_labels, batch_bboxes, text_detection_threshold)
        batch_tail_indices = self.processor._get_indices_of_tails_to_keep(batch_scores, batch_labels, batch_bboxes, tail_detection_threshold)

        predicted_obj_tokens_for_batch = self._get_predicted_obj_tokens(detection_transformer_output)
        predicted_t2c_tokens_for_batch = self._get_predicted_t2c_tokens(detection_transformer_output)
        predicted_c2c_tokens_for_batch = self._get_predicted_c2c_tokens(detection_transformer_output)

        text_character_affinity_matrices = self._get_text_character_affinity_matrices(
            character_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_character_indices)],
            text_obj_tokens_for_this_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)],
            t2c_tokens_for_batch=predicted_t2c_tokens_for_batch,
            apply_sigmoid=True,
        )

        character_bboxes_in_batch = [batch_bboxes[i][j] for i, j in enumerate(batch_character_indices)]
        character_character_affinity_matrices = self._get_character_character_affinity_matrices(
            character_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_character_indices)],
            crop_embeddings_for_batch=self.predict_crop_embeddings(images, character_bboxes_in_batch, move_to_device_fn),
            c2c_tokens_for_batch=predicted_c2c_tokens_for_batch,
            apply_sigmoid=True,
        )

        text_tail_affinity_matrices = self._get_text_tail_affinity_matrices(
            text_obj_tokens_for_this_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)],
            tail_obj_tokens_for_batch=[x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_tail_indices)],
            apply_sigmoid=True,
        )

        is_this_text_a_dialogue = self._get_text_classification([x[i] for x, i in zip(predicted_obj_tokens_for_batch, batch_text_indices)])

        results = []
        for batch_index in range(len(batch_scores)):
            panel_indices = batch_panel_indices[batch_index]
            character_indices = batch_character_indices[batch_index]
            text_indices = batch_text_indices[batch_index]
            tail_indices = batch_tail_indices[batch_index]

            character_bboxes = batch_bboxes[batch_index][character_indices]
            panel_bboxes = batch_bboxes[batch_index][panel_indices]
            text_bboxes = batch_bboxes[batch_index][text_indices]
            tail_bboxes = batch_bboxes[batch_index][tail_indices]

            local_sorted_panel_indices = sort_panels(panel_bboxes)
            panel_bboxes = panel_bboxes[local_sorted_panel_indices]
            local_sorted_text_indices = sort_text_boxes_in_reading_order(text_bboxes, panel_bboxes)
            text_bboxes = text_bboxes[local_sorted_text_indices]

            character_character_matching_scores = character_character_affinity_matrices[batch_index]
            text_character_matching_scores = text_character_affinity_matrices[batch_index][local_sorted_text_indices]
            text_tail_matching_scores = text_tail_affinity_matrices[batch_index][local_sorted_text_indices]
            
            is_essential_text = is_this_text_a_dialogue[batch_index][local_sorted_text_indices] > text_classification_threshold
            character_cluster_labels = UnionFind.from_adj_matrix(
                character_character_matching_scores > character_character_matching_threshold
            ).get_labels_for_connected_components()

            if 0 in text_character_matching_scores.shape:
                text_character_associations = torch.zeros((0, 2), dtype=torch.long)
            else:
                most_likely_speaker_for_each_text = torch.argmax(text_character_matching_scores, dim=1)
                text_indices = torch.arange(len(text_bboxes)).type_as(most_likely_speaker_for_each_text)
                text_character_associations = torch.stack([text_indices, most_likely_speaker_for_each_text], dim=1)
                to_keep = text_character_matching_scores.max(dim=1).values > text_character_matching_threshold
                text_character_associations = text_character_associations[to_keep]
            
            if 0 in text_tail_matching_scores.shape:
                text_tail_associations = torch.zeros((0, 2), dtype=torch.long)
            else:
                most_likely_tail_for_each_text = torch.argmax(text_tail_matching_scores, dim=1)
                text_indices = torch.arange(len(text_bboxes)).type_as(most_likely_tail_for_each_text)
                text_tail_associations = torch.stack([text_indices, most_likely_tail_for_each_text], dim=1)
                to_keep = text_tail_matching_scores.max(dim=1).values > text_tail_matching_threshold
                text_tail_associations = text_tail_associations[to_keep]

            results.append({
                "panels": panel_bboxes.tolist(),
                "texts": text_bboxes.tolist(),
                "characters": character_bboxes.tolist(),
                "tails": tail_bboxes.tolist(),
                "text_character_associations": text_character_associations.tolist(),
                "text_tail_associations": text_tail_associations.tolist(),
                "character_cluster_labels": character_cluster_labels,
                "is_essential_text": is_essential_text.tolist(),
            })

        return results

    def get_affinity_matrices_given_annotations(
            self, images, annotations, move_to_device_fn=None, apply_sigmoid=True
    ):
        assert not self.config.disable_detections
        move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn

        character_bboxes_in_batch = [[bbox for bbox, label in zip(a["bboxes_as_x1y1x2y2"], a["labels"]) if label == 0] for a in annotations]
        crop_embeddings_for_batch = self.predict_crop_embeddings(images, character_bboxes_in_batch, move_to_device_fn)

        inputs_to_detection_transformer = self.processor.preprocess_inputs_for_detection(images, annotations)
        inputs_to_detection_transformer = move_to_device_fn(inputs_to_detection_transformer)
        processed_targets = inputs_to_detection_transformer.pop("labels")

        detection_transformer_output = self._get_detection_transformer_output(**inputs_to_detection_transformer)
        predicted_obj_tokens_for_batch = self._get_predicted_obj_tokens(detection_transformer_output)
        predicted_t2c_tokens_for_batch = self._get_predicted_t2c_tokens(detection_transformer_output)
        predicted_c2c_tokens_for_batch = self._get_predicted_c2c_tokens(detection_transformer_output)

        predicted_class_scores, predicted_bboxes = self._get_predicted_bboxes_and_classes(detection_transformer_output)
        matching_dict = {
            "logits": predicted_class_scores,
            "pred_boxes": predicted_bboxes,
        }
        indices = self.matcher(matching_dict, processed_targets)

        matched_char_obj_tokens_for_batch = []
        matched_text_obj_tokens_for_batch = []
        matched_tail_obj_tokens_for_batch = []
        t2c_tokens_for_batch = []
        c2c_tokens_for_batch = []

        for j, (pred_idx, tgt_idx) in enumerate(indices):
            target_idx_to_pred_idx = {tgt.item(): pred.item() for pred, tgt in zip(pred_idx, tgt_idx)}
            targets_for_this_image = processed_targets[j]
            indices_of_text_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 1]
            indices_of_char_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 0]
            indices_of_tail_boxes_in_annotation = [i for i, label in enumerate(targets_for_this_image["class_labels"]) if label == 3]
            predicted_text_indices = [target_idx_to_pred_idx[i] for i in indices_of_text_boxes_in_annotation]
            predicted_char_indices = [target_idx_to_pred_idx[i] for i in indices_of_char_boxes_in_annotation]
            predicted_tail_indices = [target_idx_to_pred_idx[i] for i in indices_of_tail_boxes_in_annotation]
            matched_char_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_char_indices])
            matched_text_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_text_indices])
            matched_tail_obj_tokens_for_batch.append(predicted_obj_tokens_for_batch[j][predicted_tail_indices])
            t2c_tokens_for_batch.append(predicted_t2c_tokens_for_batch[j])
            c2c_tokens_for_batch.append(predicted_c2c_tokens_for_batch[j])
        
        text_character_affinity_matrices = self._get_text_character_affinity_matrices(
            character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch,
            text_obj_tokens_for_this_batch=matched_text_obj_tokens_for_batch,
            t2c_tokens_for_batch=t2c_tokens_for_batch,
            apply_sigmoid=apply_sigmoid,
        )

        character_character_affinity_matrices = self._get_character_character_affinity_matrices(
            character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch,
            crop_embeddings_for_batch=crop_embeddings_for_batch,
            c2c_tokens_for_batch=c2c_tokens_for_batch,
            apply_sigmoid=apply_sigmoid,
        )
        
        character_character_affinity_matrices_crop_only = self._get_character_character_affinity_matrices(
            character_obj_tokens_for_batch=matched_char_obj_tokens_for_batch,
            crop_embeddings_for_batch=crop_embeddings_for_batch,
            c2c_tokens_for_batch=c2c_tokens_for_batch,
            crop_only=True,
            apply_sigmoid=apply_sigmoid,
        )

        text_tail_affinity_matrices = self._get_text_tail_affinity_matrices(
            text_obj_tokens_for_this_batch=matched_text_obj_tokens_for_batch,
            tail_obj_tokens_for_batch=matched_tail_obj_tokens_for_batch,
            apply_sigmoid=apply_sigmoid,
        )

        is_this_text_a_dialogue = self._get_text_classification(matched_text_obj_tokens_for_batch, apply_sigmoid=apply_sigmoid)

        return {
            "text_character_affinity_matrices": text_character_affinity_matrices,
            "character_character_affinity_matrices": character_character_affinity_matrices,
            "character_character_affinity_matrices_crop_only": character_character_affinity_matrices_crop_only,
            "text_tail_affinity_matrices": text_tail_affinity_matrices,
            "is_this_text_a_dialogue": is_this_text_a_dialogue,
        }

    
    def predict_crop_embeddings(self, images, crop_bboxes, move_to_device_fn=None, mask_ratio=0.0, batch_size=256):
        if self.config.disable_crop_embeddings:
            return None
        
        assert isinstance(crop_bboxes, List), "please provide a list of bboxes for each image to get embeddings for"
        
        move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn
        
        # temporarily change the mask ratio from default to the one specified
        old_mask_ratio = self.crop_embedding_model.embeddings.config.mask_ratio
        self.crop_embedding_model.embeddings.config.mask_ratio = mask_ratio

        crops_per_image = []
        num_crops_per_batch = [len(bboxes) for bboxes in crop_bboxes]
        for image, bboxes, num_crops in zip(images, crop_bboxes, num_crops_per_batch):
            crops = self.processor.crop_image(image, bboxes)
            assert len(crops) == num_crops
            crops_per_image.extend(crops)
        
        if len(crops_per_image) == 0:
            return [move_to_device_fn(torch.zeros(0, self.config.crop_embedding_model_config.hidden_size)) for _ in crop_bboxes]

        crops_per_image = self.processor.preprocess_inputs_for_crop_embeddings(crops_per_image)
        crops_per_image = move_to_device_fn(crops_per_image)
        
        # process the crops in batches to avoid OOM
        embeddings = []
        for i in range(0, len(crops_per_image), batch_size):
            crops = crops_per_image[i:i+batch_size]
            embeddings_per_batch = self.crop_embedding_model(crops).last_hidden_state[:, 0]
            embeddings.append(embeddings_per_batch)
        embeddings = torch.cat(embeddings, dim=0)

        crop_embeddings_for_batch = []
        for num_crops in num_crops_per_batch:
            crop_embeddings_for_batch.append(embeddings[:num_crops])
            embeddings = embeddings[num_crops:]
        
        # restore the mask ratio to the default
        self.crop_embedding_model.embeddings.config.mask_ratio = old_mask_ratio

        return crop_embeddings_for_batch
    
    def predict_ocr(self, images, crop_bboxes, move_to_device_fn=None, use_tqdm=False, batch_size=32, max_new_tokens=64):
        assert not self.config.disable_ocr
        move_to_device_fn = self.move_to_device if move_to_device_fn is None else move_to_device_fn

        crops_per_image = []
        num_crops_per_batch = [len(bboxes) for bboxes in crop_bboxes]
        for image, bboxes, num_crops in zip(images, crop_bboxes, num_crops_per_batch):
            crops = self.processor.crop_image(image, bboxes)
            assert len(crops) == num_crops
            crops_per_image.extend(crops)
        
        if len(crops_per_image) == 0:
            return [[] for _ in crop_bboxes]

        crops_per_image = self.processor.preprocess_inputs_for_ocr(crops_per_image)
        crops_per_image = move_to_device_fn(crops_per_image)
        
        # process the crops in batches to avoid OOM
        all_generated_texts = []
        if use_tqdm:
            from tqdm import tqdm
            pbar = tqdm(range(0, len(crops_per_image), batch_size))
        else:
            pbar = range(0, len(crops_per_image), batch_size)
        for i in pbar:
            crops = crops_per_image[i:i+batch_size]
            generated_ids = self.ocr_model.generate(crops, max_new_tokens=max_new_tokens)
            generated_texts = self.processor.postprocess_ocr_tokens(generated_ids)
            all_generated_texts.extend(generated_texts)

        texts_for_images = []
        for num_crops in num_crops_per_batch:
            texts_for_images.append([x.replace("\n", "") for x in all_generated_texts[:num_crops]])
            all_generated_texts = all_generated_texts[num_crops:]

        return texts_for_images
    
    def visualise_single_image_prediction(
            self, image_as_np_array, predictions, filename=None
    ):
        return visualise_single_image_prediction(image_as_np_array, predictions, filename)

    
    @torch.no_grad()
    def _get_detection_transformer_output(
            self, 
            pixel_values: torch.FloatTensor,
            pixel_mask: Optional[torch.LongTensor] = None
    ):
        if self.config.disable_detections:
            raise ValueError("Detection model is disabled. Set disable_detections=False in the config.")
        return self.detection_transformer(
            pixel_values=pixel_values,
            pixel_mask=pixel_mask,
            return_dict=True
        )
    
    def _get_predicted_obj_tokens(
            self,
            detection_transformer_output: ConditionalDetrModelOutput
    ):
        return detection_transformer_output.last_hidden_state[:, :-self.num_non_obj_tokens]
    
    def _get_predicted_c2c_tokens(
            self,
            detection_transformer_output: ConditionalDetrModelOutput
    ):
        return detection_transformer_output.last_hidden_state[:, -self.num_non_obj_tokens]
    
    def _get_predicted_t2c_tokens(
            self,
            detection_transformer_output: ConditionalDetrModelOutput
    ):
        return detection_transformer_output.last_hidden_state[:, -self.num_non_obj_tokens+1]
    
    def _get_predicted_bboxes_and_classes(
            self,
            detection_transformer_output: ConditionalDetrModelOutput,
    ):
        if self.config.disable_detections:
            raise ValueError("Detection model is disabled. Set disable_detections=False in the config.")

        obj = self._get_predicted_obj_tokens(detection_transformer_output)

        predicted_class_scores = self.class_labels_classifier(obj)
        reference = detection_transformer_output.reference_points[:-self.num_non_obj_tokens] 
        reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1)
        predicted_boxes = self.bbox_predictor(obj)
        predicted_boxes[..., :2] += reference_before_sigmoid
        predicted_boxes = predicted_boxes.sigmoid()

        return predicted_class_scores, predicted_boxes
    
    def _get_text_classification(
            self,
            text_obj_tokens_for_batch: List[torch.FloatTensor],
            apply_sigmoid=False,
    ):
        assert not self.config.disable_detections
        is_this_text_a_dialogue = []
        for text_obj_tokens in text_obj_tokens_for_batch:
            if text_obj_tokens.shape[0] == 0:
                is_this_text_a_dialogue.append(torch.tensor([], dtype=torch.bool))
                continue
            classification = self.is_this_text_a_dialogue(text_obj_tokens).squeeze(-1)
            if apply_sigmoid:
                classification = classification.sigmoid()
            is_this_text_a_dialogue.append(classification)
        return is_this_text_a_dialogue
    
    def _get_character_character_affinity_matrices(
            self,
            character_obj_tokens_for_batch: List[torch.FloatTensor] = None,
            crop_embeddings_for_batch: List[torch.FloatTensor] = None,
            c2c_tokens_for_batch: List[torch.FloatTensor] = None,
            crop_only=False,
            apply_sigmoid=True,
    ):
        assert self.config.disable_detections or (character_obj_tokens_for_batch is not None and c2c_tokens_for_batch is not None)
        assert self.config.disable_crop_embeddings or crop_embeddings_for_batch is not None
        assert not self.config.disable_detections or not self.config.disable_crop_embeddings

        if crop_only:
            affinity_matrices = []
            for crop_embeddings in crop_embeddings_for_batch:
                crop_embeddings = crop_embeddings / crop_embeddings.norm(dim=-1, keepdim=True)
                affinity_matrix = crop_embeddings @ crop_embeddings.T
                affinity_matrices.append(affinity_matrix)
            return affinity_matrices
        affinity_matrices = []
        for batch_index, (character_obj_tokens, c2c) in enumerate(zip(character_obj_tokens_for_batch, c2c_tokens_for_batch)):
            if character_obj_tokens.shape[0] == 0:
                affinity_matrices.append(torch.zeros(0, 0).type_as(character_obj_tokens))
                continue
            if not self.config.disable_crop_embeddings:
                crop_embeddings = crop_embeddings_for_batch[batch_index]
                assert character_obj_tokens.shape[0] == crop_embeddings.shape[0]
                character_obj_tokens = torch.cat([character_obj_tokens, crop_embeddings], dim=-1)
            char_i = repeat(character_obj_tokens, "i d -> i repeat d", repeat=character_obj_tokens.shape[0])
            char_j = repeat(character_obj_tokens, "j d -> repeat j d", repeat=character_obj_tokens.shape[0])
            char_ij = rearrange([char_i, char_j], "two i j d -> (i j) (two d)")
            c2c = repeat(c2c, "d -> repeat d", repeat = char_ij.shape[0])
            char_ij_c2c = torch.cat([char_ij, c2c], dim=-1)
            character_character_affinities = self.character_character_matching_head(char_ij_c2c)
            character_character_affinities = rearrange(character_character_affinities, "(i j) 1 -> i j", i=char_i.shape[0])
            character_character_affinities = (character_character_affinities + character_character_affinities.T) / 2
            if apply_sigmoid:
                character_character_affinities = character_character_affinities.sigmoid()
            affinity_matrices.append(character_character_affinities)
        return affinity_matrices
    
    def _get_text_character_affinity_matrices(
            self,
            character_obj_tokens_for_batch: List[torch.FloatTensor] = None,
            text_obj_tokens_for_this_batch: List[torch.FloatTensor] = None,
            t2c_tokens_for_batch: List[torch.FloatTensor] = None,
            apply_sigmoid=True,
    ):
        assert not self.config.disable_detections
        assert character_obj_tokens_for_batch is not None and text_obj_tokens_for_this_batch is not None and t2c_tokens_for_batch is not None
        affinity_matrices = []
        for character_obj_tokens, text_obj_tokens, t2c in zip(character_obj_tokens_for_batch, text_obj_tokens_for_this_batch, t2c_tokens_for_batch):
            if character_obj_tokens.shape[0] == 0 or text_obj_tokens.shape[0] == 0:
                affinity_matrices.append(torch.zeros(text_obj_tokens.shape[0], character_obj_tokens.shape[0]).type_as(character_obj_tokens))
                continue
            text_i = repeat(text_obj_tokens, "i d -> i repeat d", repeat=character_obj_tokens.shape[0])
            char_j = repeat(character_obj_tokens, "j d -> repeat j d", repeat=text_obj_tokens.shape[0])
            text_char = rearrange([text_i, char_j], "two i j d -> (i j) (two d)")
            t2c = repeat(t2c, "d -> repeat d", repeat = text_char.shape[0])
            text_char_t2c = torch.cat([text_char, t2c], dim=-1)
            text_character_affinities = self.text_character_matching_head(text_char_t2c)
            text_character_affinities = rearrange(text_character_affinities, "(i j) 1 -> i j", i=text_i.shape[0])
            if apply_sigmoid:
                text_character_affinities = text_character_affinities.sigmoid()
            affinity_matrices.append(text_character_affinities)
        return affinity_matrices
    
    def _get_text_tail_affinity_matrices(
            self,
            text_obj_tokens_for_this_batch: List[torch.FloatTensor] = None,
            tail_obj_tokens_for_batch: List[torch.FloatTensor] = None,
            apply_sigmoid=True,
    ):
        assert not self.config.disable_detections
        assert tail_obj_tokens_for_batch is not None and text_obj_tokens_for_this_batch is not None
        affinity_matrices = []
        for tail_obj_tokens, text_obj_tokens in zip(tail_obj_tokens_for_batch, text_obj_tokens_for_this_batch):
            if tail_obj_tokens.shape[0] == 0 or text_obj_tokens.shape[0] == 0:
                affinity_matrices.append(torch.zeros(text_obj_tokens.shape[0], tail_obj_tokens.shape[0]).type_as(tail_obj_tokens))
                continue
            text_i = repeat(text_obj_tokens, "i d -> i repeat d", repeat=tail_obj_tokens.shape[0])
            tail_j = repeat(tail_obj_tokens, "j d -> repeat j d", repeat=text_obj_tokens.shape[0])
            text_tail = rearrange([text_i, tail_j], "two i j d -> (i j) (two d)")
            text_tail_affinities = self.text_tail_matching_head(text_tail)
            text_tail_affinities = rearrange(text_tail_affinities, "(i j) 1 -> i j", i=text_i.shape[0])
            if apply_sigmoid:
                text_tail_affinities = text_tail_affinities.sigmoid()
            affinity_matrices.append(text_tail_affinities)
        return affinity_matrices