File size: 2,100 Bytes
5d3ef06
 
 
 
0659e6a
5d3ef06
5331cbb
5d3ef06
 
 
b250d42
5d3ef06
 
 
 
 
 
5331cbb
 
 
 
 
 
 
 
 
 
b250d42
 
 
5331cbb
b250d42
5331cbb
5d3ef06
5331cbb
 
 
b250d42
5331cbb
 
b250d42
5331cbb
 
 
c60900c
5331cbb
5d3ef06
b250d42
5d3ef06
5331cbb
 
 
 
 
 
 
 
 
 
5d3ef06
 
5331cbb
5d3ef06
5331cbb
5d3ef06
b250d42
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: diffusers
pipeline_tag: text-to-image
inference: true
base_model: stabilityai/stable-diffusion-xl-base-1.0
---
# DPO LoRA Stable Diffusion XL
Model trained with LoRA implementation of Diffusion DPO Read more [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo)


Base Model: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

## Running with [🧨 diffusers library](https://github.com/huggingface/diffusers)


```python
import torch
from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler
from diffusers.utils import make_image_grid

pipe = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
    pipe.scheduler.config,
    use_karras_sigmas=True,
    algorithm_type="sde-dpmsolver++"
)

pipe.to("cuda");

seed = 12341234123 
prompt = "professional portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography"
negative_prompt = "3d render, cartoon, drawing, art, low light, blur, pixelated, low resolution, black and white"
num_inference_steps = 40
height = 1024
width = height
guidance_scale = 7.5

pipe.unload_lora_weights()
pipe.load_lora_weights(
    "radames/sdxl-DPO-LoRA",
    adapter_name="sdxl-dpo-lora",
)
pipe.set_adapters(["sdxl-dpo-lora"], adapter_weights=[0.9])
generator = torch.Generator().manual_seed(seed)
with_dpo = pipe(
        prompt=prompt,
        guidance_scale=guidance_scale,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]
with_dpo
```

# Adaptor Weights effect

adapter_weights

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/f69suGIl9Ysnmi52ahol8.jpeg)