File size: 7,856 Bytes
7122534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# python train.py -opt options/sr/x1_ITF_SkinDiffDetail_Lite_v1.yml
name: x1_ITF_SkinDiffDetail_Lite_v1
# the name that defines the experiment and the directory that will be created in the experiments directory.
# name: debug_001_template # use the "debug" or "debug_nochkp" prefix in the name to run a test session and check everything is working. Does validation and state saving every 8 iterations. Remove "debug" to run the real training session.
use_tb_logger: false
# wheter to enable Tensorboard logging or not. Output will be saved in: traiNNer/tb_logger/
model: sr
# the model training strategy to be used. Depends on the type of model, from: https://github.com/victorca25/traiNNer/tree/master/codes/models
scale: 1 # the scale factor that will be used for training for super-resolution cases. Default is "1".
gpu_ids: [0] # the list of `CUDA_VISIBLE_DEVICES` that will be used during training, ie. for two GPUs, use [0, 1]. The batch size should be a multiple of the number of 'gpu_ids', since images will be distributed from the batch to each GPU.
use_amp: true # select to use PyTorch's Automatic Mixed Precision package to train in low-precision FP16 mode (lowers VRAM requirements).
use_swa: false # select to use Stochastic Weight Averaging
use_cem: false # select to use CEM during training. https://github.com/victorca25/traiNNer/tree/master/codes/models/modules/architectures/CEM
# Dataset options:
datasets: # configure the datasets
train: # the stage the dataset will be used for (training)
name: x1_ITF_SkinDiffDetail_Lite_v1 # the name of your dataset (only informative)
mode: aligned
# dataset mode: https://github.com/victorca25/traiNNer/tree/master/codes/data
dataroot_HR: [
#'K:/TRAINING/data/Skin_Diff2Nrml/hr_clean_tiles/'
'../datasets/Skin_DiffDetail/hr/'
]
dataroot_LR: [
#'K:/TRAINING/data/Skin_Diff2Nrml/lr_clean_tiles/'
'../datasets/Skin_DiffDetail/lr_soft/'
] # low resolution images
subset_file: null
use_shuffle: true
znorm: false
n_workers: 8
batch_size: 12
virtual_batch_size: 12
preprocess: crop
crop_size: 64
image_channels: 3
# Color space conversion
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
# LR and HR modifiers.
# aug_downscale: 0.2
# shape_change: reshape_lr
# Enable random downscaling of HR images (will fix LR pair to correct size)
hr_downscale: true
hr_downscale_types: [0, 3]
hr_downscale_amount: [1, 2, 4]
# #pre_crop: true
# Presets and on the fly (OTF) augmentations
#augs_strategy: combo
#add_blur_preset: custom_blur
#add_resize_preset: custom_resize
#add_noise_preset: custom_noise
#aug_downscale: 0.2
resize_strat: pre
# On the fly generation of LR:
# dataroot_kernels: 'KERNEL PATH !!!! CHANGE THIS OR COMMENT OUT'
#lr_downscale: false
#lr_downscale_types: ["linear", "bicubic", "nearest_aligned"]
# Rotations augmentations:
use_flip: true
use_rot: true
use_hrrot: true
# Noise and blur augmentations:
#lr_blur: true
#lr_blur_types: {sinc: 0.2, iso: 0.2, ansio2: 0.4, sinc2: 0.2, clean: 3}
#noise_data: 'K:/TRAINING/traiNNer/noise_patches/'
#lr_noise: true
#lr_noise_types: {camera: 0.1, jpeg: 0.8, clean: 3}
#lr_noise2: false
#lr_noise_types2: {jpeg: 1, webp: 0, clean: 2, camera: 2}
#hr_noise: false
#hr_noise_types: {gaussian: 1, clean: 4}
# Color augmentations
# lr_fringes: false
# lr_fringes_chance: 0.4
# auto_levels: HR
# rand_auto_levels: 0.7
#lr_unsharp_mask: true
#lr_rand_unsharp: 0.7
# hr_unsharp_mask: true
# hr_rand_unsharp: 1
# Augmentations for classification or (maybe) inpainting networks:
# lr_cutout: false
# lr_erasing: false
#val:
#name: val_set14_part
#mode: aligned
#dataroot_B: '../datasets/val/hr'
#dataroot_A: '../datasets/val/lr'
#znorm: false
# Color space conversion:
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
path:
root: '../'
pretrain_model_G: '../experiments/pretrained_models/1x_DIV2K-Lite_SpongeBC1-Lite_interp.pth'
# pretrain_model_D: 'K:/TRAINING/data/models/x1_ITF_SkinDiff2Nrm_Lite_v3_208500_D.pth'
resume_state: '../experiments/x1_ITF_SkinDiffDetail_Lite_v1/training_state/latest.state'
# Generator options:
network_G: esrgan-lite # configurations for the Generator network
# Discriminator options:
network_D:
# ESRGAN (default)| PPON:
which_model_D: multiscale # discriminator_vgg_128 | discriminator_vgg | discriminator_vgg_128_fea (feature extraction) | patchgan | multiscale
norm_type: batch
act_type: leakyrelu
mode: CNA # CNA | NAC
nf: 32
in_nc: 3
nlayer: 3 # only for patchgan and multiscale
num_D: 3 # only for multiscale
train:
# Optimizer options:
optim_G: adamp
optim_D: adamp
# Schedulers options:
lr_scheme: MultiStepLR
lr_steps_rel: [50000, 100000, 200000, 300000]
lr_gamma: 0.5
# For SWA scheduler
swa_start_iter_rel: 0.05
swa_lr: 1e-4
swa_anneal_epochs: 10
swa_anneal_strategy: "cos"
# Losses:
pixel_criterion: l1 # pixel (content) loss
pixel_weight: 0.05
feature_criterion: l1 # feature loss (VGG feature network)
feature_weight: 0.3
cx_type: contextual # contextual loss
cx_weight: 1
cx_vgg_layers: {conv_3_2: 1, conv_4_2: 1}
#hfen_criterion: l1 # hfen
#hfen_weight: 1e-6
#grad_type: grad-4d-l1 # image gradient loss
#grad_weight: 4e-1
# tv_type: normal # total variation
# tv_weight: 1e-5
# tv_norm: 1
ssim_type: ssim # structural similarity
ssim_weight: 0.05
lpips_weight: 0.25 # [.25] perceptual loss
lpips_type: net-lin
lpips_net: squeeze
# Experimental losses
# spl_type: spl # spatial profile loss
# spl_weight: 0.1
#of_type: overflow # overflow loss
#of_weight: 0.1
# range_weight: 1 # range loss
# fft_type: fft # FFT loss
# fft_weight: 0.2 #[.2]
color_criterion: color-l1cosinesim # color consistency loss
color_weight: 0.1
# avg_criterion: avg-l1 # averaging downscale loss
# avg_weight: 5
# ms_criterion: multiscale-l1 # multi-scale pixel loss
# ms_weight: 1e-2
#fdpl_type: fdpl # frequency domain-based perceptual loss
#fdpl_weight: 1e-3
# Adversarial loss:
#gan_type: vanilla
#gan_weight: 4e-3
# freeze_loc: 4
# For wgan-gp:
# D_update_ratio: 1
# D_init_iters: 0
# gp_weigth: 10
# Feature matching (if using the discriminator_vgg_128_fea or discriminator_vgg_fea):
# gan_featmaps: true
# dis_feature_criterion: cb # discriminator feature loss
# dis_feature_weight: 0.01
# For PPON:
# p1_losses: [pix]
# p2_losses: [pix-multiscale, ms-ssim]
# p3_losses: [fea]
# ppon_stages: [1000, 2000]
# Differentiable Augmentation for Data-Efficient GAN Training
# diffaug: true
# dapolicy: 'color,transl_zoom,flip,rotate,cutout'
# Batch (Mixup) augmentations
#mixup: false
#mixopts: [blend, rgb, mixup, cutmix, cutmixup] # , "cutout", "cutblur"]
#mixprob: [1.0, 1.0, 1.0, 1.0, 1.0] #, 1.0, 1.0]
#mixalpha: [0.6, 1.0, 1.2, 0.7, 0.7] #, 0.001, 0.7]
#aux_mixprob: 1.0
#aux_mixalpha: 1.2
# mix_p: 1.2
# Frequency Separator
#fs: true
#lpf_type: average
#hpf_type: average
# Other training options:
manual_seed: 0
niter: 250000
# warmup_iter: -1
#val_freq: 5e3
# overwrite_val_imgs: true
# val_comparison: true
# metrics: 'psnr,ssim,lpips'
#grad_clip: auto
#grad_clip_value: 0.1 # "auto"
logger:
print_freq: 50
save_checkpoint_freq: 500
overwrite_chkp: false
|