File size: 14,475 Bytes
3773ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
from dataclasses import dataclass, field
from typing import List, Union, Optional, Tuple
from enum import IntEnum
import os
import cv2
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from torchvision.transforms.functional import to_pil_image
# import math
from diffusers import StableDiffusionInpaintPipeline
# from post_process.yoloface.face_detector import YoloDetector
MASK_MERGE_INVERT = ["None", "Merge", "Merge and Invert"]
def adetailer(sd_pipeline, yolodetector, images: list[Image.Image], prompt, negative_prompt, seed=42):
resolution = 512
# ad_model = "post_process/yoloface/weights/yolov5n-face.pt"
processed_input_imgs = []
for input_image in images:
pred = ultralytics_predict(yolodetector_model=yolodetector, image=input_image)
masks = pred_preprocessing(pred)
for i_mask, mask in enumerate(masks):
# # Only inpaint up to n faces
# if i_mask == n:
# break
blurred_mask = mask.filter(ImageFilter.GaussianBlur(8))
crop_region = get_crop_region(np.array(blurred_mask))
crop_region = expand_crop_region(crop_region, resolution, resolution, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
paste_to = (x1, y1, x2-x1, y2-y1)
image_mask = blurred_mask.crop(crop_region)
image_mask = image_mask.resize((resolution, resolution), Image.LANCZOS)
image_masked = Image.new('RGBa', (input_image.width, input_image.height))
image_masked.paste(input_image.convert("RGBA"), mask=ImageOps.invert(blurred_mask.convert('L')))
overlay_image = image_masked.convert('RGBA')
patch_input_img = input_image.crop(crop_region)
patch_input_img = patch_input_img.resize((resolution, resolution), Image.LANCZOS)
processed_input_imgs.append([patch_input_img, paste_to, overlay_image])
denoising_strength = 0.4
pipe = StableDiffusionInpaintPipeline(
vae=sd_pipeline.vae,
text_encoder=sd_pipeline.text_encoder,
tokenizer=sd_pipeline.tokenizer,
unet=sd_pipeline.unet,
scheduler=sd_pipeline.scheduler,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=sd_pipeline.feature_extractor,
).to('cuda')
generator = torch.Generator(device="cuda").manual_seed(seed)
inpaint_images = []
for i in range(len(processed_input_imgs)):
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=[processed_input_imgs[i][0]],
mask_image=image_mask,
num_inference_steps=30,
strength=denoising_strength,
controlnet_conditioning_scale=1.0,
generator=generator
).images[0]
paste_to = processed_input_imgs[i][1]
overlay_image = processed_input_imgs[i][2]
input_image = apply_overlay(out, paste_to, overlay_image)
inpaint_images.append(input_image)
return inpaint_images
def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left-pad, 0)),
int(max(crop_top-pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h))
)
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2-x1))
x1 -= desired_width_diff//2
x2 += desired_width_diff - desired_width_diff//2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
@dataclass
class PredictOutput:
bboxes: List[List[Union[int, float]]] = field(default_factory=list)
masks: List[Image.Image] = field(default_factory=list)
preview: Optional[Image.Image] = None
def create_mask_from_bbox(
bboxes: List[List[float]], shape: Tuple[int, int]
) -> List[Image.Image]:
"""
Parameters
----------
bboxes: List[List[float]]
list of [x1, y1, x2, y2]
bounding boxes
shape: Tuple[int, int]
shape of the image (width, height)
Returns
-------
masks: List[Image.Image]
A list of masks
"""
masks = []
for bbox in bboxes:
mask = Image.new("L", shape, 0)
mask_draw = ImageDraw.Draw(mask)
mask_draw.rectangle(bbox, fill=255)
masks.append(mask)
return masks
def ultralytics_predict(
# model_path: str,
yolodector_model,
image: Image.Image,
confidence: float = 0.5,
device: str = "cuda",
) -> PredictOutput:
# model = YoloDetector(target_size=720, device=device, min_face=50)
bboxes, _ = yolodector_model.predict(np.array(image), conf_thres=confidence, iou_thres=0.5)
masks = create_mask_from_bbox(bboxes[0], image.size)
# model = YOLO(model_path) #old
# pred = model(image, conf=confidence, device=device) #old
# bboxes = pred[0].boxes.xyxy.cpu().numpy() #old
# if bboxes.size == 0:
# return PredictOutput()
# bboxes = bboxes.tolist()
# if pred[0].masks is None: #old
# masks = create_mask_from_bbox(bboxes, image.size) #old
# else: #old
# masks = mask_to_pil(pred[0].masks.data, image.size) #old
# preview = pred[0].plot() #old
# preview = cv2.cvtColor(preview, cv2.COLOR_BGR2RGB) #old
# preview = Image.fromarray(preview) #old
return PredictOutput(bboxes=bboxes[0], masks=masks, preview=image)
def mask_to_pil(masks, shape: Tuple[int, int]) -> List[Image.Image]:
"""
Parameters
----------
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
The device can be CUDA, but `to_pil_image` takes care of that.
shape: Tuple[int, int]
(width, height) of the original image
"""
n = masks.shape[0]
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
class MergeInvert(IntEnum):
NONE = 0
MERGE = 1
MERGE_INVERT = 2
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
"""
The offset function takes an image and offsets it by a given x(β) and y(β) value.
Parameters
----------
mask: Image.Image
Pass the mask image to the function
x: int
β
y: int
β
Returns
-------
PIL.Image.Image
A new image that is offset by x and y
"""
return ImageChops.offset(img, x, -y)
def is_all_black(img: Image.Image) -> bool:
arr = np.array(img)
return cv2.countNonZero(arr) == 0
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.dilate(arr, kernel, iterations=1)
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.erode(arr, kernel, iterations=1)
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
"""
The dilate_erode function takes an image and a value.
If the value is positive, it dilates the image by that amount.
If the value is negative, it erodes the image by that amount.
Parameters
----------
img: PIL.Image.Image
the image to be processed
value: int
kernel size of dilation or erosion
Returns
-------
PIL.Image.Image
The image that has been dilated or eroded
"""
if value == 0:
return img
arr = np.array(img)
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
return Image.fromarray(arr)
def mask_preprocess(
masks: List[Image.Image],
kernel: int = 0,
x_offset: int = 0,
y_offset: int = 0,
merge_invert: Union[int, 'MergeInvert', str] = MergeInvert.NONE,
) -> List[Image.Image]:
"""
The mask_preprocess function takes a list of masks and preprocesses them.
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
Parameters
----------
masks: List[Image.Image]
A list of masks
kernel: int
kernel size of dilation or erosion
x_offset: int
β
y_offset: int
β
Returns
-------
List[Image.Image]
A list of processed masks
"""
if not masks:
return []
if x_offset != 0 or y_offset != 0:
masks = [offset(m, x_offset, y_offset) for m in masks]
if kernel != 0:
masks = [dilate_erode(m, kernel) for m in masks]
masks = [m for m in masks if not is_all_black(m)]
return mask_merge_invert(masks, mode=merge_invert)
def mask_merge_invert(
masks: List[Image.Image], mode: Union[int, 'MergeInvert', str]
) -> List[Image.Image]:
if isinstance(mode, str):
mode = MASK_MERGE_INVERT.index(mode)
if mode == MergeInvert.NONE or not masks:
return masks
if mode == MergeInvert.MERGE:
return mask_merge(masks)
if mode == MergeInvert.MERGE_INVERT:
merged = mask_merge(masks)
return mask_invert(merged)
raise RuntimeError
def bbox_area(bbox: List[float]):
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
def is_in_ratio(bbox: List[float], low: float, high: float, orig_area: int) -> bool:
area = bbox_area(bbox)
return low <= area / orig_area <= high
if not pred.bboxes:
return pred
w, h = pred.preview.size
orig_area = w * h
items = len(pred.bboxes)
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
class SortBy(IntEnum):
NONE = 0
LEFT_TO_RIGHT = 1
CENTER_TO_EDGE = 2
AREA = 3
# Bbox sorting
def _key_left_to_right(bbox: List[float]) -> float:
"""
Left to right
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return bbox[0]
def _key_center_to_edge(bbox: List[float], *, center: Tuple[float, float]) -> float:
"""
Center to edge
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
image: Image.Image
the image
"""
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
return dist(center, bbox_center)
def _key_area(bbox: List[float]) -> float:
"""
Large to small
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return -bbox_area(bbox)
def sort_bboxes(
pred: PredictOutput, order: Union[int, 'SortBy'] = SortBy.NONE
) -> PredictOutput:
if order == SortBy.NONE or len(pred.bboxes) <= 1:
return pred
if order == SortBy.LEFT_TO_RIGHT:
key = _key_left_to_right
elif order == SortBy.CENTER_TO_EDGE:
width, height = pred.preview.size
center = (width / 2, height / 2)
key = partial(_key_center_to_edge, center=center)
elif order == SortBy.AREA:
key = _key_area
else:
raise RuntimeError
items = len(pred.bboxes)
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
def filter_k_largest(pred: PredictOutput, k: int = 0) -> PredictOutput:
if not pred.bboxes or k == 0:
return pred
areas = [bbox_area(bbox) for bbox in pred.bboxes]
idx = np.argsort(areas)[-k:]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
def pred_preprocessing(pred: PredictOutput) -> List[Image.Image]:
pred = filter_by_ratio(
pred, low=0.0, high=1.0
)
pred = filter_k_largest(pred, k=0)
pred = sort_bboxes(pred, SortBy.AREA)
return mask_preprocess(
pred.masks,
kernel=4,
x_offset=0,
y_offset=0,
merge_invert="None",
)
def apply_overlay(image, paste_loc, overlay):
if overlay is None:
return image
if paste_loc is not None:
x, y, w, h = paste_loc
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = image.resize((w, h), Image.LANCZOS)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
return image |