File size: 15,037 Bytes
8678225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
library_name: quantile-forest
license: apache-2.0
tags:
- quantile-forest
- sklearn
- skops
- tabular-regression
- quantile-regression
- uncertainty-estimation
- prediction-intervals
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
AveBedrms:
- 1.0238095238095237
- 0.9718804920913884
- 1.073446327683616
AveOccup:
- 2.5555555555555554
- 2.109841827768014
- 2.8022598870056497
AveRooms:
- 6.984126984126984
- 6.238137082601054
- 8.288135593220339
HouseAge:
- 41.0
- 21.0
- 52.0
Latitude:
- 37.88
- 37.86
- 37.85
Longitude:
- -122.23
- -122.22
- -122.24
MedInc:
- 8.3252
- 8.3014
- 7.2574
Population:
- 322.0
- 2401.0
- 496.0
---
# Model description
This is a RandomForestQuantileRegressor trained on the California Housing dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
The model was trained using default parameters on a 5-fold cross-validation pipeline.
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|----------------------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| criterion | squared_error |
| default_quantiles | 0.5 |
| max_depth | |
| max_features | 1.0 |
| max_leaf_nodes | |
| max_samples | |
| max_samples_leaf | 1 |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| monotonic_cst | |
| n_estimators | 100 |
| n_jobs | |
| oob_score | False |
| random_state | RandomState(MT19937) |
| verbose | 0 |
| warm_start | False |
</details>
### Model Plot
<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
}#sk-container-id-1 {color: var(--sklearn-color-text);
}#sk-container-id-1 pre {padding: 0;
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
}div.sk-parallel-item,
div.sk-serial,
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
}/* Toggleable label */
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator-specific style *//* Colorize estimator box */
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
}/* On hover, darken the color of the background */
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}/* Label box, darken color on hover, fitted */
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
}#sk-container-id-1 div.sk-label-container {text-align: center;
}/* Estimator-specific */
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}/* on hover */
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
}.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
}.sk-estimator-doc-link:hover span {display: block;
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestQuantileRegressor(random_state=RandomState(MT19937) at 0x129E7B440)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow "> RandomForestQuantileRegressor<span class="sk-estimator-doc-link ">i<span>Not fitted</span></span></label><div class="sk-toggleable__content "><pre>RandomForestQuantileRegressor(random_state=RandomState(MT19937) at 0x129E7B440)</pre></div> </div></div></div></div>
## Evaluation Results
| Metric | Value |
|--------------------------------|----------|
| Mean Absolute Percentage Error | 0.164007 |
| Median Absolute Error | 0.171 |
| Mean Squared Error | 0.25832 |
| R-Squared | 0.806 |
# How to Get Started with the Model
<details>
<summary> Click to expand </summary>
```python
from examples.plot_qrf_huggingface_inference import CrossValidationPipeline
pipeline = CrossValidationPipeline.load(qrf_pkl_filename)
```
</details>
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
|