quanla's picture
Training in progress, epoch 3
2ddcbc2 verified
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - food101
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-lora-food101
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: food101
          type: food101
          config: default
          split: train[:5000]
          args: default
        metrics:
          - type: accuracy
            value: 0.96
            name: Accuracy

vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1448
  • Accuracy: 0.96

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 9 0.5069 0.896
2.1627 2.0 18 0.1891 0.946
0.3451 3.0 27 0.1448 0.96
0.2116 4.0 36 0.1509 0.958
0.1711 5.0 45 0.1498 0.958

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2