File size: 10,337 Bytes
f7def40
 
 
a891cf7
f7def40
 
 
 
 
 
247483c
f7def40
 
 
 
b90be5a
f7def40
 
8a9ede4
b90be5a
 
f7def40
 
 
 
 
 
 
 
 
 
0463823
f7def40
 
 
c1c337f
 
6cbdd62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7def40
0463823
 
f7def40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c337f
 
 
 
 
6cbdd62
 
c1c337f
 
f7def40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c337f
f7def40
c1c337f
 
 
 
f7def40
 
 
 
 
c1c337f
 
f7def40
fe0ad37
f7def40
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
library_name: pytorch
license: other
pipeline_tag: keypoint-detection
tags:
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/hrnet_pose_quantized/web-assets/model_demo.png)

# HRNetPoseQuantized: Optimized for Mobile Deployment
## Perform accurate human pose estimation


HRNet performs pose estimation in high-resolution representations.

This model is an implementation of HRNetPoseQuantized found [here](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/hrnet_posenet).


This repository provides scripts to run HRNetPoseQuantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/hrnet_pose_quantized).


### Model Details

- **Model Type:** Pose estimation
- **Model Stats:**
  - Model checkpoint: hrnet_posenet_FP32_state_dict
  - Input resolution: 256x192
  - Number of parameters: 28.5M
  - Model size: 109 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| HRNetPoseQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.956 ms | 0 - 18 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.238 ms | 0 - 22 MB | INT8 | NPU | [HRNetPoseQuantized.so](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.so) |
| HRNetPoseQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.349 ms | 0 - 52 MB | INT8 | NPU | [HRNetPoseQuantized.onnx](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.onnx) |
| HRNetPoseQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.716 ms | 0 - 39 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.925 ms | 0 - 37 MB | INT8 | NPU | [HRNetPoseQuantized.so](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.so) |
| HRNetPoseQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.45 ms | 0 - 66 MB | INT8 | NPU | [HRNetPoseQuantized.onnx](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.onnx) |
| HRNetPoseQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.579 ms | 0 - 40 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.849 ms | 0 - 35 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.241 ms | 0 - 59 MB | INT8 | NPU | [HRNetPoseQuantized.onnx](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.onnx) |
| HRNetPoseQuantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.886 ms | 0 - 42 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.364 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 17.608 ms | 0 - 2 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.949 ms | 0 - 22 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.209 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | SA7255P ADP | SA7255P | TFLITE | 13.878 ms | 0 - 32 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | SA7255P ADP | SA7255P | QNN | 14.356 ms | 0 - 9 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.952 ms | 0 - 17 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.225 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | SA8295P ADP | SA8295P | TFLITE | 1.651 ms | 0 - 39 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | SA8295P ADP | SA8295P | QNN | 2.174 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.953 ms | 0 - 22 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.221 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | SA8775P ADP | SA8775P | TFLITE | 1.456 ms | 0 - 32 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | SA8775P ADP | SA8775P | QNN | 1.896 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.182 ms | 0 - 37 MB | INT8 | NPU | [HRNetPoseQuantized.tflite](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.tflite) |
| HRNetPoseQuantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.447 ms | 0 - 37 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.357 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
| HRNetPoseQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.138 ms | 29 - 29 MB | INT8 | NPU | [HRNetPoseQuantized.onnx](https://huggingface.co/qualcomm/HRNetPoseQuantized/blob/main/HRNetPoseQuantized.onnx) |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[hrnet_pose_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.hrnet_pose_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.hrnet_pose_quantized.export
```
```
Profiling Results
------------------------------------------------------------
HRNetPoseQuantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 1.0                    
Estimated peak memory usage (MB): [0, 18]                
Total # Ops                     : 518                    
Compute Unit(s)                 : NPU (518 ops)          
```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.hrnet_pose_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on HRNetPoseQuantized's performance across various devices [here](https://aihub.qualcomm.com/models/hrnet_pose_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of HRNetPoseQuantized can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/hrnet_posenet)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).