qaihm-bot commited on
Commit
c049fc5
·
verified ·
1 Parent(s): ad9c2c8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +237 -0
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: bsd-3-clause
4
+ pipeline_tag: image-classification
5
+ tags:
6
+ - backbone
7
+ - real_time
8
+ - android
9
+
10
+ ---
11
+
12
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/efficientvit_b2_cls/web-assets/model_demo.png)
13
+
14
+ # EfficientViT-b2-cls: Optimized for Mobile Deployment
15
+ ## Imagenet classifier and general purpose backbone
16
+
17
+
18
+ EfficientViT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
19
+
20
+ This model is an implementation of EfficientViT-b2-cls found [here](https://github.com/CVHub520/efficientvit).
21
+
22
+
23
+ This repository provides scripts to run EfficientViT-b2-cls on Qualcomm® devices.
24
+ More details on model performance across various devices, can be found
25
+ [here](https://aihub.qualcomm.com/models/efficientvit_b2_cls).
26
+
27
+
28
+ ### Model Details
29
+
30
+ - **Model Type:** Image classification
31
+ - **Model Stats:**
32
+ - Model checkpoint: Imagenet
33
+ - Input resolution: 224x224
34
+ - Number of parameters: 24M
35
+ - Model size: 200 MB
36
+
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.02 ms | 0 - 3 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
40
+ | EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 7.832 ms | 0 - 34 MB | FP16 | NPU | [EfficientViT-b2-cls.so](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.so) |
41
+ | EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 6.869 ms | 0 - 58 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
42
+ | EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.658 ms | 0 - 193 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
43
+ | EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 5.206 ms | 1 - 36 MB | FP16 | NPU | [EfficientViT-b2-cls.so](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.so) |
44
+ | EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.44 ms | 1 - 240 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
45
+ | EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.868 ms | 0 - 52 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
46
+ | EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.531 ms | 0 - 35 MB | FP16 | NPU | Use Export Script |
47
+ | EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.721 ms | 0 - 70 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
48
+ | EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.06 ms | 0 - 2 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
49
+ | EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 7.48 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
50
+ | EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.143 ms | 0 - 188 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
51
+ | EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.909 ms | 1 - 37 MB | FP16 | NPU | Use Export Script |
52
+ | EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.943 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
53
+ | EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.498 ms | 51 - 51 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
54
+
55
+
56
+
57
+
58
+ ## Installation
59
+
60
+ This model can be installed as a Python package via pip.
61
+
62
+ ```bash
63
+ pip install "qai-hub-models[efficientvit_b2_cls]"
64
+ ```
65
+
66
+
67
+
68
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
69
+
70
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
71
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
72
+
73
+ With this API token, you can configure your client to run models on the cloud
74
+ hosted devices.
75
+ ```bash
76
+ qai-hub configure --api_token API_TOKEN
77
+ ```
78
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
79
+
80
+
81
+
82
+ ## Demo off target
83
+
84
+ The package contains a simple end-to-end demo that downloads pre-trained
85
+ weights and runs this model on a sample input.
86
+
87
+ ```bash
88
+ python -m qai_hub_models.models.efficientvit_b2_cls.demo
89
+ ```
90
+
91
+ The above demo runs a reference implementation of pre-processing, model
92
+ inference, and post processing.
93
+
94
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
95
+ environment, please add the following to your cell (instead of the above).
96
+ ```
97
+ %run -m qai_hub_models.models.efficientvit_b2_cls.demo
98
+ ```
99
+
100
+
101
+ ### Run model on a cloud-hosted device
102
+
103
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
104
+ device. This script does the following:
105
+ * Performance check on-device on a cloud-hosted device
106
+ * Downloads compiled assets that can be deployed on-device for Android.
107
+ * Accuracy check between PyTorch and on-device outputs.
108
+
109
+ ```bash
110
+ python -m qai_hub_models.models.efficientvit_b2_cls.export
111
+ ```
112
+ ```
113
+ Profiling Results
114
+ ------------------------------------------------------------
115
+ EfficientViT-b2-cls
116
+ Device : Samsung Galaxy S23 (13)
117
+ Runtime : TFLITE
118
+ Estimated inference time (ms) : 7.0
119
+ Estimated peak memory usage (MB): [0, 3]
120
+ Total # Ops : 379
121
+ Compute Unit(s) : NPU (379 ops)
122
+ ```
123
+
124
+
125
+ ## How does this work?
126
+
127
+ This [export script](https://aihub.qualcomm.com/models/efficientvit_b2_cls/qai_hub_models/models/EfficientViT-b2-cls/export.py)
128
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
129
+ on-device. Lets go through each step below in detail:
130
+
131
+ Step 1: **Compile model for on-device deployment**
132
+
133
+ To compile a PyTorch model for on-device deployment, we first trace the model
134
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
135
+
136
+ ```python
137
+ import torch
138
+
139
+ import qai_hub as hub
140
+ from qai_hub_models.models.efficientvit_b2_cls import
141
+
142
+ # Load the model
143
+
144
+ # Device
145
+ device = hub.Device("Samsung Galaxy S23")
146
+
147
+
148
+ ```
149
+
150
+
151
+ Step 2: **Performance profiling on cloud-hosted device**
152
+
153
+ After compiling models from step 1. Models can be profiled model on-device using the
154
+ `target_model`. Note that this scripts runs the model on a device automatically
155
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
156
+ provided job URL to view a variety of on-device performance metrics.
157
+ ```python
158
+ profile_job = hub.submit_profile_job(
159
+ model=target_model,
160
+ device=device,
161
+ )
162
+
163
+ ```
164
+
165
+ Step 3: **Verify on-device accuracy**
166
+
167
+ To verify the accuracy of the model on-device, you can run on-device inference
168
+ on sample input data on the same cloud hosted device.
169
+ ```python
170
+ input_data = torch_model.sample_inputs()
171
+ inference_job = hub.submit_inference_job(
172
+ model=target_model,
173
+ device=device,
174
+ inputs=input_data,
175
+ )
176
+ on_device_output = inference_job.download_output_data()
177
+
178
+ ```
179
+ With the output of the model, you can compute like PSNR, relative errors or
180
+ spot check the output with expected output.
181
+
182
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
183
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
184
+
185
+
186
+
187
+ ## Run demo on a cloud-hosted device
188
+
189
+ You can also run the demo on-device.
190
+
191
+ ```bash
192
+ python -m qai_hub_models.models.efficientvit_b2_cls.demo --on-device
193
+ ```
194
+
195
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
196
+ environment, please add the following to your cell (instead of the above).
197
+ ```
198
+ %run -m qai_hub_models.models.efficientvit_b2_cls.demo -- --on-device
199
+ ```
200
+
201
+
202
+ ## Deploying compiled model to Android
203
+
204
+
205
+ The models can be deployed using multiple runtimes:
206
+ - TensorFlow Lite (`.tflite` export): [This
207
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
208
+ guide to deploy the .tflite model in an Android application.
209
+
210
+
211
+ - QNN (`.so` export ): This [sample
212
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
213
+ provides instructions on how to use the `.so` shared library in an Android application.
214
+
215
+
216
+ ## View on Qualcomm® AI Hub
217
+ Get more details on EfficientViT-b2-cls's performance across various devices [here](https://aihub.qualcomm.com/models/efficientvit_b2_cls).
218
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
219
+
220
+
221
+ ## License
222
+ * The license for the original implementation of EfficientViT-b2-cls can be found [here](https://github.com/CVHub520/efficientvit/blob/main/LICENSE).
223
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
224
+
225
+
226
+
227
+ ## References
228
+ * [EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction](https://arxiv.org/abs/2205.14756)
229
+ * [Source Model Implementation](https://github.com/CVHub520/efficientvit)
230
+
231
+
232
+
233
+ ## Community
234
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
235
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
236
+
237
+