File size: 17,937 Bytes
216b476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0123886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216b476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0123886
 
216b476
 
 
 
 
 
 
0123886
 
216b476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
---
library_name: pytorch
license: apache-2.0
tags:
- android
pipeline_tag: image-to-text

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/easyocr/web-assets/model_demo.png)

# EasyOCR: Optimized for Mobile Deployment
## Ready-to-use OCR with 80+ supported languages and all popular writing scripts


EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.

This model is an implementation of EasyOCR found [here](https://github.com/JaidedAI/EasyOCR).


This repository provides scripts to run EasyOCR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/easyocr).


### Model Details

- **Model Type:** Image to text
- **Model Stats:**
  - Model checkpoint: easyocr-small-stage1
  - Input resolution: 384x384
  - Number of parameters (EasyOCRDetector): 20.8M
  - Model size (EasyOCRDetector): 79.2 MB
  - Number of parameters (EasyOCRRecognizer): 3.84M
  - Model size (EasyOCRRecognizer): 14.7 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 41.72 ms | 1 - 132 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 37.7 ms | 6 - 17 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 41.887 ms | 32 - 121 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 30.07 ms | 14 - 72 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 28.085 ms | 6 - 24 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 30.704 ms | 42 - 74 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 29.358 ms | 14 - 48 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 28.786 ms | 6 - 33 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 24.189 ms | 40 - 68 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | SA7255P ADP | SA7255P | TFLITE | 2113.984 ms | 0 - 30 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA7255P ADP | SA7255P | QNN | 2109.673 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 41.306 ms | 9 - 140 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 38.731 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8295P ADP | SA8295P | TFLITE | 78.453 ms | 16 - 49 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8295P ADP | SA8295P | QNN | 75.057 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 41.546 ms | 10 - 144 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 38.334 ms | 6 - 7 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8775P ADP | SA8775P | TFLITE | 88.531 ms | 16 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8775P ADP | SA8775P | QNN | 84.933 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 2113.984 ms | 0 - 30 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 2109.673 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 38.797 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 88.531 ms | 16 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 84.933 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 82.831 ms | 16 - 77 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.737 ms | 6 - 36 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 38.608 ms | 6 - 6 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 41.643 ms | 66 - 66 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 117.587 ms | 3 - 6 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 23.252 ms | 0 - 3 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 20.753 ms | 0 - 22 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 109.883 ms | 9 - 29 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 16.886 ms | 0 - 18 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 16.816 ms | 0 - 25 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 106.439 ms | 20 - 35 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 19.025 ms | 0 - 428 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 14.032 ms | 0 - 22 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | SA7255P ADP | SA7255P | TFLITE | 571.291 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA7255P ADP | SA7255P | QNN | 281.893 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 129.985 ms | 2 - 4 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | QNN | 23.373 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8295P ADP | SA8295P | TFLITE | 218.62 ms | 6 - 23 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8295P ADP | SA8295P | QNN | 39.157 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 125.209 ms | 7 - 10 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | QNN | 23.218 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8775P ADP | SA8775P | TFLITE | 410.407 ms | 11 - 21 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8775P ADP | SA8775P | QNN | 31.266 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 571.291 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 281.893 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 116.297 ms | 0 - 38 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 23.278 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 410.407 ms | 11 - 21 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 31.266 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 164.69 ms | 5 - 27 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 36.284 ms | 0 - 170 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 24.48 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.61 ms | 0 - 0 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[easyocr]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.easyocr.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.easyocr.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.easyocr.export
```
```
Profiling Results
------------------------------------------------------------
EasyOCRDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 41.7                   
Estimated peak memory usage (MB): [1, 132]               
Total # Ops                     : 42                     
Compute Unit(s)                 : NPU (42 ops)           

------------------------------------------------------------
EasyOCRRecognizer
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 117.6                  
Estimated peak memory usage (MB): [3, 6]                 
Total # Ops                     : 136                    
Compute Unit(s)                 : CPU (136 ops)          
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/easyocr/qai_hub_models/models/EasyOCR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.easyocr import Model

# Load the model
model = Model.from_pretrained()
detector_model = model.detector
recognizer_model = model.recognizer

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
detector_input_shape = detector_model.get_input_spec()
detector_sample_inputs = detector_model.sample_inputs()

traced_detector_model = torch.jit.trace(detector_model, [torch.tensor(data[0]) for _, data in detector_sample_inputs.items()])

# Compile model on a specific device
detector_compile_job = hub.submit_compile_job(
    model=traced_detector_model ,
    device=device,
    input_specs=detector_model.get_input_spec(),
)

# Get target model to run on-device
detector_target_model = detector_compile_job.get_target_model()
# Trace model
recognizer_input_shape = recognizer_model.get_input_spec()
recognizer_sample_inputs = recognizer_model.sample_inputs()

traced_recognizer_model = torch.jit.trace(recognizer_model, [torch.tensor(data[0]) for _, data in recognizer_sample_inputs.items()])

# Compile model on a specific device
recognizer_compile_job = hub.submit_compile_job(
    model=traced_recognizer_model ,
    device=device,
    input_specs=recognizer_model.get_input_spec(),
)

# Get target model to run on-device
recognizer_target_model = recognizer_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
detector_profile_job = hub.submit_profile_job(
    model=detector_target_model,
    device=device,
)
recognizer_profile_job = hub.submit_profile_job(
    model=recognizer_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
detector_input_data = detector_model.sample_inputs()
detector_inference_job = hub.submit_inference_job(
    model=detector_target_model,
    device=device,
    inputs=detector_input_data,
)
detector_inference_job.download_output_data()
recognizer_input_data = recognizer_model.sample_inputs()
recognizer_inference_job = hub.submit_inference_job(
    model=recognizer_target_model,
    device=device,
    inputs=recognizer_input_data,
)
recognizer_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on EasyOCR's performance across various devices [here](https://aihub.qualcomm.com/models/easyocr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of EasyOCR can be found
  [here](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Source Model Implementation](https://github.com/JaidedAI/EasyOCR)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).