File size: 17,937 Bytes
216b476 0123886 216b476 0123886 216b476 0123886 216b476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
library_name: pytorch
license: apache-2.0
tags:
- android
pipeline_tag: image-to-text
---

# EasyOCR: Optimized for Mobile Deployment
## Ready-to-use OCR with 80+ supported languages and all popular writing scripts
EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.
This model is an implementation of EasyOCR found [here](https://github.com/JaidedAI/EasyOCR).
This repository provides scripts to run EasyOCR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/easyocr).
### Model Details
- **Model Type:** Image to text
- **Model Stats:**
- Model checkpoint: easyocr-small-stage1
- Input resolution: 384x384
- Number of parameters (EasyOCRDetector): 20.8M
- Model size (EasyOCRDetector): 79.2 MB
- Number of parameters (EasyOCRRecognizer): 3.84M
- Model size (EasyOCRRecognizer): 14.7 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 41.72 ms | 1 - 132 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 37.7 ms | 6 - 17 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
| EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 41.887 ms | 32 - 121 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 30.07 ms | 14 - 72 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 28.085 ms | 6 - 24 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
| EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 30.704 ms | 42 - 74 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 29.358 ms | 14 - 48 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 28.786 ms | 6 - 33 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 24.189 ms | 40 - 68 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRDetector | SA7255P ADP | SA7255P | TFLITE | 2113.984 ms | 0 - 30 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA7255P ADP | SA7255P | QNN | 2109.673 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 41.306 ms | 9 - 140 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 38.731 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8295P ADP | SA8295P | TFLITE | 78.453 ms | 16 - 49 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8295P ADP | SA8295P | QNN | 75.057 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 41.546 ms | 10 - 144 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 38.334 ms | 6 - 7 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | SA8775P ADP | SA8775P | TFLITE | 88.531 ms | 16 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | SA8775P ADP | SA8775P | QNN | 84.933 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 2113.984 ms | 0 - 30 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 2109.673 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 38.797 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 88.531 ms | 16 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 84.933 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 82.831 ms | 16 - 77 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
| EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.737 ms | 6 - 36 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 38.608 ms | 6 - 6 MB | FP16 | NPU | Use Export Script |
| EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 41.643 ms | 66 - 66 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 117.587 ms | 3 - 6 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 23.252 ms | 0 - 3 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
| EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 20.753 ms | 0 - 22 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 109.883 ms | 9 - 29 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 16.886 ms | 0 - 18 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
| EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 16.816 ms | 0 - 25 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 106.439 ms | 20 - 35 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 19.025 ms | 0 - 428 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 14.032 ms | 0 - 22 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
| EasyOCRRecognizer | SA7255P ADP | SA7255P | TFLITE | 571.291 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA7255P ADP | SA7255P | QNN | 281.893 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 129.985 ms | 2 - 4 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | QNN | 23.373 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8295P ADP | SA8295P | TFLITE | 218.62 ms | 6 - 23 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8295P ADP | SA8295P | QNN | 39.157 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 125.209 ms | 7 - 10 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | QNN | 23.218 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | SA8775P ADP | SA8775P | TFLITE | 410.407 ms | 11 - 21 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | SA8775P ADP | SA8775P | QNN | 31.266 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 571.291 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 281.893 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 116.297 ms | 0 - 38 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 23.278 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 410.407 ms | 11 - 21 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 31.266 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 164.69 ms | 5 - 27 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
| EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 36.284 ms | 0 - 170 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 24.48 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.61 ms | 0 - 0 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[easyocr]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.easyocr.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.easyocr.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.easyocr.export
```
```
Profiling Results
------------------------------------------------------------
EasyOCRDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 41.7
Estimated peak memory usage (MB): [1, 132]
Total # Ops : 42
Compute Unit(s) : NPU (42 ops)
------------------------------------------------------------
EasyOCRRecognizer
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 117.6
Estimated peak memory usage (MB): [3, 6]
Total # Ops : 136
Compute Unit(s) : CPU (136 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/easyocr/qai_hub_models/models/EasyOCR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.easyocr import Model
# Load the model
model = Model.from_pretrained()
detector_model = model.detector
recognizer_model = model.recognizer
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
detector_input_shape = detector_model.get_input_spec()
detector_sample_inputs = detector_model.sample_inputs()
traced_detector_model = torch.jit.trace(detector_model, [torch.tensor(data[0]) for _, data in detector_sample_inputs.items()])
# Compile model on a specific device
detector_compile_job = hub.submit_compile_job(
model=traced_detector_model ,
device=device,
input_specs=detector_model.get_input_spec(),
)
# Get target model to run on-device
detector_target_model = detector_compile_job.get_target_model()
# Trace model
recognizer_input_shape = recognizer_model.get_input_spec()
recognizer_sample_inputs = recognizer_model.sample_inputs()
traced_recognizer_model = torch.jit.trace(recognizer_model, [torch.tensor(data[0]) for _, data in recognizer_sample_inputs.items()])
# Compile model on a specific device
recognizer_compile_job = hub.submit_compile_job(
model=traced_recognizer_model ,
device=device,
input_specs=recognizer_model.get_input_spec(),
)
# Get target model to run on-device
recognizer_target_model = recognizer_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
detector_profile_job = hub.submit_profile_job(
model=detector_target_model,
device=device,
)
recognizer_profile_job = hub.submit_profile_job(
model=recognizer_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
detector_input_data = detector_model.sample_inputs()
detector_inference_job = hub.submit_inference_job(
model=detector_target_model,
device=device,
inputs=detector_input_data,
)
detector_inference_job.download_output_data()
recognizer_input_data = recognizer_model.sample_inputs()
recognizer_inference_job = hub.submit_inference_job(
model=recognizer_target_model,
device=device,
inputs=recognizer_input_data,
)
recognizer_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on EasyOCR's performance across various devices [here](https://aihub.qualcomm.com/models/easyocr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of EasyOCR can be found
[here](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Source Model Implementation](https://github.com/JaidedAI/EasyOCR)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|