File size: 25,904 Bytes
a39be45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
"""
Copyright 2023 LINE Corporation
LINE Corporation licenses this file to you under the Apache License,
version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:
    https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""

from __future__ import print_function

import argparse
import inspect
import os
import pdb
import pickle
import random
import re
import shutil
import time
from collections import *

import ipdb
import numpy as np

# torch
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import yaml
from einops import rearrange, reduce, repeat
from evaluation.classificationMAP import getClassificationMAP as cmAP
from evaluation.detectionMAP import getSingleStreamDetectionMAP as dsmAP
from feeders.tools import collate_with_padding_multi_joint
from model.losses import cross_entropy_loss, mvl_loss
from sklearn.metrics import f1_score

# Custom
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.optim.lr_scheduler import _LRScheduler
from tqdm import tqdm
from utils.logger import Logger

def remove_prefix_from_state_dict(state_dict, prefix):
    new_state_dict = {}
    for k, v in state_dict.items():
        if k.startswith(prefix):
            new_k = k[len(prefix):]  # strip the prefix
        else:
            new_k = k
        new_state_dict[new_k] = v
    return new_state_dict


def init_seed(seed):
    torch.cuda.manual_seed_all(seed)
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def get_parser():
    # parameter priority: command line > config > default
    parser = argparse.ArgumentParser(
        description="Spatial Temporal Graph Convolution Network"
    )
    parser.add_argument(
        "--work-dir",
        default="./work_dir/temp",
        help="the work folder for storing results",
    )

    parser.add_argument("-model_saved_name", default="")
    parser.add_argument(
        "--config",
        default="./config/nturgbd-cross-view/test_bone.yaml",
        help="path to the configuration file",
    )

    # processor
    parser.add_argument("--phase", default="train", help="must be train or test")

    # visulize and debug
    parser.add_argument("--seed", type=int, default=5, help="random seed for pytorch")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=100,
        help="the interval for printing messages (#iteration)",
    )
    parser.add_argument(
        "--save-interval",
        type=int,
        default=2,
        help="the interval for storing models (#iteration)",
    )
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=5,
        help="the interval for evaluating models (#iteration)",
    )
    parser.add_argument(
        "--print-log", type=str2bool, default=True, help="print logging or not"
    )
    parser.add_argument(
        "--show-topk",
        type=int,
        default=[1, 5],
        nargs="+",
        help="which Top K accuracy will be shown",
    )

    # feeder
    parser.add_argument(
        "--feeder", default="feeder.feeder", help="data loader will be used"
    )
    parser.add_argument(
        "--num-worker",
        type=int,
        default=32,
        help="the number of worker for data loader",
    )
    parser.add_argument(
        "--train-feeder-args",
        default=dict(),
        help="the arguments of data loader for training",
    )
    parser.add_argument(
        "--test-feeder-args",
        default=dict(),
        help="the arguments of data loader for test",
    )

    # model
    parser.add_argument("--model", default=None, help="the model will be used")
    parser.add_argument(
        "--model-args", type=dict, default=dict(), help="the arguments of model"
    )
    parser.add_argument(
        "--weights", default=None, help="the weights for network initialization"
    )
    parser.add_argument(
        "--ignore-weights",
        type=str,
        default=[],
        nargs="+",
        help="the name of weights which will be ignored in the initialization",
    )

    # optim
    parser.add_argument(
        "--base-lr", type=float, default=0.01, help="initial learning rate"
    )
    parser.add_argument(
        "--step",
        type=int,
        default=[200],
        nargs="+",
        help="the epoch where optimizer reduce the learning rate",
    )

    # training
    parser.add_argument(
        "--device",
        type=int,
        default=0,
        nargs="+",
        help="the indexes of GPUs for training or testing",
    )
    parser.add_argument("--optimizer", default="SGD", help="type of optimizer")
    parser.add_argument(
        "--nesterov", type=str2bool, default=False, help="use nesterov or not"
    )
    parser.add_argument(
        "--batch-size", type=int, default=256, help="training batch size"
    )
    parser.add_argument(
        "--test-batch-size", type=int, default=256, help="test batch size"
    )
    parser.add_argument(
        "--start-epoch", type=int, default=0, help="start training from which epoch"
    )
    parser.add_argument(
        "--num-epoch", type=int, default=80, help="stop training in which epoch"
    )
    parser.add_argument(
        "--weight-decay", type=float, default=0.0005, help="weight decay for optimizer"
    )
    # loss
    parser.add_argument("--loss", type=str, default="CE", help="loss type(CE or focal)")
    parser.add_argument(
        "--label_count_path",
        default=None,
        type=str,
        help="Path to label counts (used in loss weighting)",
    )
    parser.add_argument(
        "---beta",
        type=float,
        default=0.9999,
        help="Hyperparameter for Class balanced loss",
    )
    parser.add_argument(
        "--gamma", type=float, default=2.0, help="Hyperparameter for Focal loss"
    )

    parser.add_argument("--only_train_part", default=False)
    parser.add_argument("--only_train_epoch", default=0)
    parser.add_argument("--warm_up_epoch", default=10)

    parser.add_argument(
        "--lambda-mil", default=1.0, help="balancing hyper-parameter of mil branch"
    )

    parser.add_argument(
        "--class-threshold",
        type=float,
        default=0.1,
        help="class threshold for rejection",
    )
    parser.add_argument(
        "--start-threshold",
        type=float,
        default=0.03,
        help="start threshold for action localization",
    )
    parser.add_argument(
        "--end-threshold",
        type=float,
        default=0.055,
        help="end threshold for action localization",
    )
    parser.add_argument(
        "--threshold-interval",
        type=float,
        default=0.005,
        help="threshold interval for action localization",
    )
    return parser


class Processor:
    """
    Processor for Skeleton-based Action Recgnition
    """

    def __init__(self, arg):
        self.arg = arg
        self.save_arg()
        if arg.phase == "train":
            if not arg.train_feeder_args["debug"]:
                if os.path.isdir(arg.model_saved_name):
                    print("log_dir: ", arg.model_saved_name, "already exist")
                    # answer = input('delete it? y/n:')
                    answer = "y"
                    if answer == "y":
                        print("Deleting dir...")
                        shutil.rmtree(arg.model_saved_name)
                        print("Dir removed: ", arg.model_saved_name)
                        # input('Refresh the website of tensorboard by pressing any keys')
                    else:
                        print("Dir not removed: ", arg.model_saved_name)
                self.train_writer = SummaryWriter(
                    os.path.join(arg.model_saved_name, "train"), "train"
                )
                self.val_writer = SummaryWriter(
                    os.path.join(arg.model_saved_name, "val"), "val"
                )
            else:
                self.train_writer = self.val_writer = SummaryWriter(
                    os.path.join(arg.model_saved_name, "test"), "test"
                )
        self.global_step = 0
        self.load_model()
        self.load_optimizer()
        self.load_data()
        self.lr = self.arg.base_lr
        self.best_acc = 0
        self.best_per_class_acc = 0
        self.loss_nce = torch.nn.BCELoss()

        self.my_logger = Logger(
            os.path.join(arg.model_saved_name, "log.txt"), title="SWTAL"
        )
        self.my_logger.set_names(["Step", "cmap"] + [f"map_0.{i}" for i in range(1, 6)]+["avg"])

    def load_data(self):
        Feeder = import_class(self.arg.feeder)
        self.data_loader = dict()
        if self.arg.phase == "train":
            self.data_loader["train"] = torch.utils.data.DataLoader(
                dataset=Feeder(**self.arg.train_feeder_args),
                batch_size=self.arg.batch_size,
                shuffle=True,
                num_workers=self.arg.num_worker,
                drop_last=True,
                collate_fn=collate_with_padding_multi_joint,
            )
        self.data_loader["test"] = torch.utils.data.DataLoader(
            dataset=Feeder(**self.arg.test_feeder_args),
            batch_size=self.arg.test_batch_size,
            shuffle=False,
            num_workers=self.arg.num_worker,
            drop_last=False,
            collate_fn=collate_with_padding_multi_joint,
        )

    def load_model(self):
        output_device = (
            self.arg.device[0] if type(self.arg.device) is list else self.arg.device
        )
        self.output_device = output_device
        Model = import_class(self.arg.model)
        shutil.copy2(inspect.getfile(Model), self.arg.work_dir)
        # print(Model)
        self.model = Model(**self.arg.model_args).cuda(output_device)
        # print(self.model)
        self.loss_type = arg.loss

        if self.arg.weights:
            self.print_log("Load weights from {}.".format(self.arg.weights))
            if ".pkl" in self.arg.weights:
                with open(self.arg.weights, "r") as f:
                    weights = pickle.load(f)
            else:
                weights = torch.load(self.arg.weights)

            weights = OrderedDict(
                [
                    [k.split("module.")[-1], v.cuda(output_device)]
                    for k, v in weights.items()
                ]
            )
            weights = remove_prefix_from_state_dict(weights, 'encoder_q.agcn.')
            keys = list(weights.keys())
            
            self.arg.ignore_weights = ['data_bn','fc','encoder_q','encoder_k','queue','queue_ptr','value_transform']
            for w in self.arg.ignore_weights:
                for key in keys:
                    if w in key:
                        if weights.pop(key, None) is not None:
                            continue
                        #     self.print_log(
                        #         "Sucessfully Remove Weights: {}.".format(key)
                        #     )
                        # else:
                        #     self.print_log("Can Not Remove Weights: {}.".format(key))

            try:
                self.model.load_state_dict(weights)
            except:
                state = self.model.state_dict()
                diff = list(set(state.keys()).difference(set(weights.keys())))
                print("Can not find these weights:")
                for d in diff:
                    print("  " + d)
                state.update(weights)
                self.model.load_state_dict(state)

        if type(self.arg.device) is list:
            if len(self.arg.device) > 1:
                self.model = nn.DataParallel(
                    self.model, device_ids=self.arg.device, output_device=output_device
                )

    def load_optimizer(self):
        if self.arg.optimizer == "SGD":
            self.optimizer = optim.SGD(
                self.model.parameters(),
                lr=self.arg.base_lr,
                momentum=0.9,
                nesterov=self.arg.nesterov,
                weight_decay=self.arg.weight_decay,
            )
        elif self.arg.optimizer == "Adam":
            self.optimizer = optim.Adam(
                self.model.parameters(),
                lr=self.arg.base_lr,
                weight_decay=self.arg.weight_decay,
            )
        else:
            raise ValueError()

    def save_arg(self):
        # save arg
        arg_dict = vars(self.arg)
        if not os.path.exists(self.arg.work_dir):
            os.makedirs(self.arg.work_dir)
        with open("{}/config.yaml".format(self.arg.work_dir), "w") as f:
            yaml.dump(arg_dict, f)

    def adjust_learning_rate(self, epoch):
        if self.arg.optimizer == "SGD" or self.arg.optimizer == "Adam":
            if epoch < self.arg.warm_up_epoch:
                lr = self.arg.base_lr * (epoch + 1) / self.arg.warm_up_epoch
            else:
                lr = self.arg.base_lr * (
                    0.1 ** np.sum(epoch >= np.array(self.arg.step))
                )
            for param_group in self.optimizer.param_groups:
                param_group["lr"] = lr

            return lr
        else:
            raise ValueError()

    def print_time(self):
        localtime = time.asctime(time.localtime(time.time()))
        self.print_log("Local current time :  " + localtime)

    def print_log(self, str, print_time=True):
        if print_time:
            localtime = time.asctime(time.localtime(time.time()))
            str = "[ " + localtime + " ] " + str
        print(str)
        if self.arg.print_log:
            with open("{}/print_log.txt".format(self.arg.work_dir), "a") as f:
                print(str, file=f)

    def record_time(self):
        self.cur_time = time.time()
        return self.cur_time

    def split_time(self):
        split_time = time.time() - self.cur_time
        self.record_time()
        return split_time

    def train(self, epoch, wb_dict, save_model=False):
        self.model.train()
        self.print_log("Training epoch: {}".format(epoch + 1))
        loader = self.data_loader["train"]
        self.adjust_learning_rate(epoch)

        loss_value, batch_acc = [], []
        self.train_writer.add_scalar("epoch", epoch, self.global_step)
        self.record_time()
        timer = dict(dataloader=0.001, model=0.001, statistics=0.001)
        process = tqdm(loader)
        if self.arg.only_train_part:
            if epoch > self.arg.only_train_epoch:
                print("only train part, require grad")
                for key, value in self.model.named_parameters():
                    if "PA" in key:
                        value.requires_grad = True
            else:
                print("only train part, do not require grad")
                for key, value in self.model.named_parameters():
                    if "PA" in key:
                        value.requires_grad = False

        vid_preds = []
        frm_preds = []
        vid_lens = []
        labels = []

        results = []
        indexs = []

        ''' 
        Switch to FULL supervision
        Dataloader->Feeder -> collate_with_padding_multi_joint
        '''

        for batch_idx, (data, label, target, mask, index, soft_label) in enumerate(
            process
        ):

            self.global_step += 1
            # get data
            data = data.float().cuda(self.output_device)
            label = label.cuda(self.output_device)
            target = target.cuda(self.output_device)
            mask = mask.cuda(self.output_device)
            soft_label = soft_label.cuda(self.output_device)
            timer["dataloader"] += self.split_time()

            ''' into one hot'''
            ground_truth_flat = target.view(-1)  
            one_hot_ground_truth = F.one_hot(ground_truth_flat, num_classes=5)
            ''' into one hot'''

            indexs.extend(index.cpu().numpy().tolist())

            ab_labels = torch.cat([label, torch.ones(label.size(0), 1).cuda()], -1)

            # forward
            frm_scrs = self.model(data)

     
            if epoch > -1:

                frm_scrs_re = rearrange(frm_scrs, "n t c -> (n t) c")
                # frm_scrs_2_re = rearrange(frm_scrs_2, "n t c -> (n t) c")
                # soft_label = rearrange(soft_label, "n t c -> (n t) c")

                # loss = cls_mil_loss * 0.1 + mvl_loss(
                #     frm_scrs, frm_scrs_2, rate=0.2, weight=0.5
                # )

                loss = cross_entropy_loss(
                    frm_scrs_re, one_hot_ground_truth
                ) #+ cross_entropy_loss(frm_scrs_2_re, one_hot_ground_truth)

            for i in range(data.size(0)):
                frm_scr = frm_scrs[i]

                label_ = label[i].cpu().numpy()
                mask_ = mask[i].cpu().numpy()
                vid_len = mask_.sum()

                frm_pred = F.softmax(frm_scr, -1).detach().cpu().numpy()[:vid_len]
                # vid_pred = mil_pred[i].detach().cpu().numpy()

                vid_pred = 0
                results.append(frm_pred)

                vid_preds.append(vid_pred)
                frm_preds.append(frm_pred)
                vid_lens.append(vid_len)
                labels.append(label_)
            
            # backward
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            loss_value.append(loss.data.item())
            timer["model"] += self.split_time()

        vid_preds = np.array(vid_preds)
        frm_preds = np.array(frm_preds)
        vid_lens = np.array(vid_lens)
        labels = np.array(labels)

        loader.dataset.label_update(results, indexs)

        # cmap = cmAP(vid_preds, labels)
        cmap = 0

        self.train_writer.add_scalar("acc", cmap, self.global_step)
        self.train_writer.add_scalar("loss", np.mean(loss_value), self.global_step)

        # statistics
        self.lr = self.optimizer.param_groups[0]["lr"]
        self.train_writer.add_scalar("lr", self.lr, self.global_step)
        timer["statistics"] += self.split_time()

        # statistics of time consumption and loss
        self.print_log("\tMean training loss: {:.4f}.".format(np.mean(loss_value)))
        self.print_log("\tAcc score: {:.3f}%".format(cmap))

        # Log
        wb_dict["train loss"] = np.mean(loss_value)
        wb_dict["train acc"] = cmap

        if save_model:
            state_dict = self.model.state_dict()
            weights = OrderedDict(
                [[k.split("module.")[-1], v.cpu()] for k, v in state_dict.items()]
            )

            torch.save(
                weights,
                self.arg.model_saved_name + str(epoch) + ".pt",
            )

        return wb_dict

    @torch.no_grad()
    def eval(
        self,
        epoch,
        wb_dict,
        loader_name=["test"],
    ):
        self.model.eval()
        self.print_log("Eval epoch: {}".format(epoch + 1))

        vid_preds = []
        frm_preds = []
        vid_lens = []
        labels = []

        for ln in loader_name:
            loss_value = []
            step = 0
            process = tqdm(self.data_loader[ln])

            for batch_idx, (data, label, target, mask, index, soft_label) in enumerate(
                process
            ):
                data = data.float().cuda(self.output_device)
                label = label.cuda(self.output_device)
                mask = mask.cuda(self.output_device)

                ab_labels = torch.cat([label, torch.ones(label.size(0), 1).cuda()], -1)

                # forward
                frm_scrs = self.model(data)


                '''Loc LOSS'''
                target = target.cuda(self.output_device)
                ''' into one hot'''
                ground_truth_flat = target.view(-1)  
                one_hot_ground_truth = F.one_hot(ground_truth_flat, num_classes=5)
                ''' into one hot'''
                frm_scrs_re = rearrange(frm_scrs, "n t c -> (n t) c")
                '''Loc LOSS'''
                '''Loc LOSS'''
                loss = cross_entropy_loss(
                    frm_scrs_re, one_hot_ground_truth
                ) 
                '''Loc LOSS'''

                loss_value.append(loss.data.item())

                for i in range(data.size(0)):
                    frm_scr = frm_scrs[i]

                    label_ = label[i].cpu().numpy()
                    mask_ = mask[i].cpu().numpy()
                    vid_len = mask_.sum()

                    frm_pred = F.softmax(frm_scr, -1).cpu().numpy()[:vid_len]
                    # vid_pred = vid_pred.cpu().numpy()

                    vid_pred = 0
                    vid_preds.append(vid_pred)
                    frm_preds.append(frm_pred)
                    vid_lens.append(vid_len)
                    labels.append(label_)

                step += 1

            vid_preds = np.array(vid_preds)
            frm_preds = np.array(frm_preds)
            vid_lens = np.array(vid_lens)
            labels = np.array(labels)

            # cmap = cmAP(vid_preds, labels)
            cmap = 0
            score = cmap
            loss = np.mean(loss_value)

            dmap, iou = dsmAP(
                vid_preds,
                frm_preds,
                vid_lens,
                self.arg.test_feeder_args["data_path"],
                self.arg,
                multi=True,
            )

            print("Classification map %f" % cmap)
            for item in list(zip(iou, dmap)):
                print("Detection map @ %f = %f" % (item[0], item[1]))

            self.my_logger.append([epoch + 1, cmap] + dmap+[np.mean(dmap)])

            wb_dict["val loss"] = loss
            wb_dict["val acc"] = score

            if score > self.best_acc:
                self.best_acc = score

            print("Acc score: ", score, " model: ", self.arg.model_saved_name)
            if self.arg.phase == "train":
                self.val_writer.add_scalar("loss", loss, self.global_step)
                self.val_writer.add_scalar("acc", score, self.global_step)

            self.print_log(
                "\tMean {} loss of {} batches: {}.".format(
                    ln, len(self.data_loader[ln]), np.mean(loss_value)
                )
            )
            self.print_log("\tAcc score: {:.3f}%".format(score))

        return wb_dict

    def start(self):
        wb_dict = {}
        if self.arg.phase == "train":
            self.print_log("Parameters:\n{}\n".format(str(vars(self.arg))))
            self.global_step = (
                self.arg.start_epoch
                * len(self.data_loader["train"])
                / self.arg.batch_size
            )

            for epoch in range(self.arg.start_epoch, self.arg.num_epoch):

                save_model = ((epoch + 1) % self.arg.save_interval == 0) or (
                    epoch + 1 == self.arg.num_epoch
                )
                wb_dict = {"lr": self.lr}

                # Train
                wb_dict = self.train(epoch, wb_dict, save_model=save_model)
                if epoch%1==0:
                # Eval. on val set
                    wb_dict = self.eval(epoch, wb_dict, loader_name=["test"])
                    # Log stats. for this epoch
                    print("Epoch: {0}\nMetrics: {1}".format(epoch, wb_dict))

            print(
                "best accuracy: ",
                self.best_acc,
                " model_name: ",
                self.arg.model_saved_name,
            )

        elif self.arg.phase == "test":
            if not self.arg.test_feeder_args["debug"]:
                wf = self.arg.model_saved_name + "_wrong.txt"
                rf = self.arg.model_saved_name + "_right.txt"
            else:
                wf = rf = None
            if self.arg.weights is None:
                raise ValueError("Please appoint --weights.")
            self.arg.print_log = False
            self.print_log("Model:   {}.".format(self.arg.model))
            self.print_log("Weights: {}.".format(self.arg.weights))

            wb_dict = self.eval(
                epoch=0,
                wb_dict=wb_dict,
                loader_name=["test"],
                wrong_file=wf,
                result_file=rf,
            )
            print("Inference metrics: ", wb_dict)
            self.print_log("Done.\n")


def str2bool(v):
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")


def import_class(name):
    components = name.split(".")
    mod = __import__(components[0])
    for comp in components[1:]:
        mod = getattr(mod, comp)
    return mod


if __name__ == "__main__":
    parser = get_parser()

    # load arg form config file
    p = parser.parse_args()
    if p.config is not None:
        with open(p.config, "r") as f:
            default_arg = yaml.safe_load(f)
        key = vars(p).keys()
        for k in default_arg.keys():
            if k not in key:
                print("WRONG ARG: {}".format(k))
                assert k in key
        parser.set_defaults(**default_arg)

    arg = parser.parse_args()
    print("BABEL Action Recognition")
    print("Config: ", arg)
    init_seed(arg.seed)
    processor = Processor(arg)
    processor.start()