File size: 25,904 Bytes
a39be45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
"""
Copyright 2023 LINE Corporation
LINE Corporation licenses this file to you under the Apache License,
version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""
from __future__ import print_function
import argparse
import inspect
import os
import pdb
import pickle
import random
import re
import shutil
import time
from collections import *
import ipdb
import numpy as np
# torch
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import yaml
from einops import rearrange, reduce, repeat
from evaluation.classificationMAP import getClassificationMAP as cmAP
from evaluation.detectionMAP import getSingleStreamDetectionMAP as dsmAP
from feeders.tools import collate_with_padding_multi_joint
from model.losses import cross_entropy_loss, mvl_loss
from sklearn.metrics import f1_score
# Custom
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.optim.lr_scheduler import _LRScheduler
from tqdm import tqdm
from utils.logger import Logger
def remove_prefix_from_state_dict(state_dict, prefix):
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith(prefix):
new_k = k[len(prefix):] # strip the prefix
else:
new_k = k
new_state_dict[new_k] = v
return new_state_dict
def init_seed(seed):
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_parser():
# parameter priority: command line > config > default
parser = argparse.ArgumentParser(
description="Spatial Temporal Graph Convolution Network"
)
parser.add_argument(
"--work-dir",
default="./work_dir/temp",
help="the work folder for storing results",
)
parser.add_argument("-model_saved_name", default="")
parser.add_argument(
"--config",
default="./config/nturgbd-cross-view/test_bone.yaml",
help="path to the configuration file",
)
# processor
parser.add_argument("--phase", default="train", help="must be train or test")
# visulize and debug
parser.add_argument("--seed", type=int, default=5, help="random seed for pytorch")
parser.add_argument(
"--log-interval",
type=int,
default=100,
help="the interval for printing messages (#iteration)",
)
parser.add_argument(
"--save-interval",
type=int,
default=2,
help="the interval for storing models (#iteration)",
)
parser.add_argument(
"--eval-interval",
type=int,
default=5,
help="the interval for evaluating models (#iteration)",
)
parser.add_argument(
"--print-log", type=str2bool, default=True, help="print logging or not"
)
parser.add_argument(
"--show-topk",
type=int,
default=[1, 5],
nargs="+",
help="which Top K accuracy will be shown",
)
# feeder
parser.add_argument(
"--feeder", default="feeder.feeder", help="data loader will be used"
)
parser.add_argument(
"--num-worker",
type=int,
default=32,
help="the number of worker for data loader",
)
parser.add_argument(
"--train-feeder-args",
default=dict(),
help="the arguments of data loader for training",
)
parser.add_argument(
"--test-feeder-args",
default=dict(),
help="the arguments of data loader for test",
)
# model
parser.add_argument("--model", default=None, help="the model will be used")
parser.add_argument(
"--model-args", type=dict, default=dict(), help="the arguments of model"
)
parser.add_argument(
"--weights", default=None, help="the weights for network initialization"
)
parser.add_argument(
"--ignore-weights",
type=str,
default=[],
nargs="+",
help="the name of weights which will be ignored in the initialization",
)
# optim
parser.add_argument(
"--base-lr", type=float, default=0.01, help="initial learning rate"
)
parser.add_argument(
"--step",
type=int,
default=[200],
nargs="+",
help="the epoch where optimizer reduce the learning rate",
)
# training
parser.add_argument(
"--device",
type=int,
default=0,
nargs="+",
help="the indexes of GPUs for training or testing",
)
parser.add_argument("--optimizer", default="SGD", help="type of optimizer")
parser.add_argument(
"--nesterov", type=str2bool, default=False, help="use nesterov or not"
)
parser.add_argument(
"--batch-size", type=int, default=256, help="training batch size"
)
parser.add_argument(
"--test-batch-size", type=int, default=256, help="test batch size"
)
parser.add_argument(
"--start-epoch", type=int, default=0, help="start training from which epoch"
)
parser.add_argument(
"--num-epoch", type=int, default=80, help="stop training in which epoch"
)
parser.add_argument(
"--weight-decay", type=float, default=0.0005, help="weight decay for optimizer"
)
# loss
parser.add_argument("--loss", type=str, default="CE", help="loss type(CE or focal)")
parser.add_argument(
"--label_count_path",
default=None,
type=str,
help="Path to label counts (used in loss weighting)",
)
parser.add_argument(
"---beta",
type=float,
default=0.9999,
help="Hyperparameter for Class balanced loss",
)
parser.add_argument(
"--gamma", type=float, default=2.0, help="Hyperparameter for Focal loss"
)
parser.add_argument("--only_train_part", default=False)
parser.add_argument("--only_train_epoch", default=0)
parser.add_argument("--warm_up_epoch", default=10)
parser.add_argument(
"--lambda-mil", default=1.0, help="balancing hyper-parameter of mil branch"
)
parser.add_argument(
"--class-threshold",
type=float,
default=0.1,
help="class threshold for rejection",
)
parser.add_argument(
"--start-threshold",
type=float,
default=0.03,
help="start threshold for action localization",
)
parser.add_argument(
"--end-threshold",
type=float,
default=0.055,
help="end threshold for action localization",
)
parser.add_argument(
"--threshold-interval",
type=float,
default=0.005,
help="threshold interval for action localization",
)
return parser
class Processor:
"""
Processor for Skeleton-based Action Recgnition
"""
def __init__(self, arg):
self.arg = arg
self.save_arg()
if arg.phase == "train":
if not arg.train_feeder_args["debug"]:
if os.path.isdir(arg.model_saved_name):
print("log_dir: ", arg.model_saved_name, "already exist")
# answer = input('delete it? y/n:')
answer = "y"
if answer == "y":
print("Deleting dir...")
shutil.rmtree(arg.model_saved_name)
print("Dir removed: ", arg.model_saved_name)
# input('Refresh the website of tensorboard by pressing any keys')
else:
print("Dir not removed: ", arg.model_saved_name)
self.train_writer = SummaryWriter(
os.path.join(arg.model_saved_name, "train"), "train"
)
self.val_writer = SummaryWriter(
os.path.join(arg.model_saved_name, "val"), "val"
)
else:
self.train_writer = self.val_writer = SummaryWriter(
os.path.join(arg.model_saved_name, "test"), "test"
)
self.global_step = 0
self.load_model()
self.load_optimizer()
self.load_data()
self.lr = self.arg.base_lr
self.best_acc = 0
self.best_per_class_acc = 0
self.loss_nce = torch.nn.BCELoss()
self.my_logger = Logger(
os.path.join(arg.model_saved_name, "log.txt"), title="SWTAL"
)
self.my_logger.set_names(["Step", "cmap"] + [f"map_0.{i}" for i in range(1, 6)]+["avg"])
def load_data(self):
Feeder = import_class(self.arg.feeder)
self.data_loader = dict()
if self.arg.phase == "train":
self.data_loader["train"] = torch.utils.data.DataLoader(
dataset=Feeder(**self.arg.train_feeder_args),
batch_size=self.arg.batch_size,
shuffle=True,
num_workers=self.arg.num_worker,
drop_last=True,
collate_fn=collate_with_padding_multi_joint,
)
self.data_loader["test"] = torch.utils.data.DataLoader(
dataset=Feeder(**self.arg.test_feeder_args),
batch_size=self.arg.test_batch_size,
shuffle=False,
num_workers=self.arg.num_worker,
drop_last=False,
collate_fn=collate_with_padding_multi_joint,
)
def load_model(self):
output_device = (
self.arg.device[0] if type(self.arg.device) is list else self.arg.device
)
self.output_device = output_device
Model = import_class(self.arg.model)
shutil.copy2(inspect.getfile(Model), self.arg.work_dir)
# print(Model)
self.model = Model(**self.arg.model_args).cuda(output_device)
# print(self.model)
self.loss_type = arg.loss
if self.arg.weights:
self.print_log("Load weights from {}.".format(self.arg.weights))
if ".pkl" in self.arg.weights:
with open(self.arg.weights, "r") as f:
weights = pickle.load(f)
else:
weights = torch.load(self.arg.weights)
weights = OrderedDict(
[
[k.split("module.")[-1], v.cuda(output_device)]
for k, v in weights.items()
]
)
weights = remove_prefix_from_state_dict(weights, 'encoder_q.agcn.')
keys = list(weights.keys())
self.arg.ignore_weights = ['data_bn','fc','encoder_q','encoder_k','queue','queue_ptr','value_transform']
for w in self.arg.ignore_weights:
for key in keys:
if w in key:
if weights.pop(key, None) is not None:
continue
# self.print_log(
# "Sucessfully Remove Weights: {}.".format(key)
# )
# else:
# self.print_log("Can Not Remove Weights: {}.".format(key))
try:
self.model.load_state_dict(weights)
except:
state = self.model.state_dict()
diff = list(set(state.keys()).difference(set(weights.keys())))
print("Can not find these weights:")
for d in diff:
print(" " + d)
state.update(weights)
self.model.load_state_dict(state)
if type(self.arg.device) is list:
if len(self.arg.device) > 1:
self.model = nn.DataParallel(
self.model, device_ids=self.arg.device, output_device=output_device
)
def load_optimizer(self):
if self.arg.optimizer == "SGD":
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.arg.base_lr,
momentum=0.9,
nesterov=self.arg.nesterov,
weight_decay=self.arg.weight_decay,
)
elif self.arg.optimizer == "Adam":
self.optimizer = optim.Adam(
self.model.parameters(),
lr=self.arg.base_lr,
weight_decay=self.arg.weight_decay,
)
else:
raise ValueError()
def save_arg(self):
# save arg
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
with open("{}/config.yaml".format(self.arg.work_dir), "w") as f:
yaml.dump(arg_dict, f)
def adjust_learning_rate(self, epoch):
if self.arg.optimizer == "SGD" or self.arg.optimizer == "Adam":
if epoch < self.arg.warm_up_epoch:
lr = self.arg.base_lr * (epoch + 1) / self.arg.warm_up_epoch
else:
lr = self.arg.base_lr * (
0.1 ** np.sum(epoch >= np.array(self.arg.step))
)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
return lr
else:
raise ValueError()
def print_time(self):
localtime = time.asctime(time.localtime(time.time()))
self.print_log("Local current time : " + localtime)
def print_log(self, str, print_time=True):
if print_time:
localtime = time.asctime(time.localtime(time.time()))
str = "[ " + localtime + " ] " + str
print(str)
if self.arg.print_log:
with open("{}/print_log.txt".format(self.arg.work_dir), "a") as f:
print(str, file=f)
def record_time(self):
self.cur_time = time.time()
return self.cur_time
def split_time(self):
split_time = time.time() - self.cur_time
self.record_time()
return split_time
def train(self, epoch, wb_dict, save_model=False):
self.model.train()
self.print_log("Training epoch: {}".format(epoch + 1))
loader = self.data_loader["train"]
self.adjust_learning_rate(epoch)
loss_value, batch_acc = [], []
self.train_writer.add_scalar("epoch", epoch, self.global_step)
self.record_time()
timer = dict(dataloader=0.001, model=0.001, statistics=0.001)
process = tqdm(loader)
if self.arg.only_train_part:
if epoch > self.arg.only_train_epoch:
print("only train part, require grad")
for key, value in self.model.named_parameters():
if "PA" in key:
value.requires_grad = True
else:
print("only train part, do not require grad")
for key, value in self.model.named_parameters():
if "PA" in key:
value.requires_grad = False
vid_preds = []
frm_preds = []
vid_lens = []
labels = []
results = []
indexs = []
'''
Switch to FULL supervision
Dataloader->Feeder -> collate_with_padding_multi_joint
'''
for batch_idx, (data, label, target, mask, index, soft_label) in enumerate(
process
):
self.global_step += 1
# get data
data = data.float().cuda(self.output_device)
label = label.cuda(self.output_device)
target = target.cuda(self.output_device)
mask = mask.cuda(self.output_device)
soft_label = soft_label.cuda(self.output_device)
timer["dataloader"] += self.split_time()
''' into one hot'''
ground_truth_flat = target.view(-1)
one_hot_ground_truth = F.one_hot(ground_truth_flat, num_classes=5)
''' into one hot'''
indexs.extend(index.cpu().numpy().tolist())
ab_labels = torch.cat([label, torch.ones(label.size(0), 1).cuda()], -1)
# forward
frm_scrs = self.model(data)
if epoch > -1:
frm_scrs_re = rearrange(frm_scrs, "n t c -> (n t) c")
# frm_scrs_2_re = rearrange(frm_scrs_2, "n t c -> (n t) c")
# soft_label = rearrange(soft_label, "n t c -> (n t) c")
# loss = cls_mil_loss * 0.1 + mvl_loss(
# frm_scrs, frm_scrs_2, rate=0.2, weight=0.5
# )
loss = cross_entropy_loss(
frm_scrs_re, one_hot_ground_truth
) #+ cross_entropy_loss(frm_scrs_2_re, one_hot_ground_truth)
for i in range(data.size(0)):
frm_scr = frm_scrs[i]
label_ = label[i].cpu().numpy()
mask_ = mask[i].cpu().numpy()
vid_len = mask_.sum()
frm_pred = F.softmax(frm_scr, -1).detach().cpu().numpy()[:vid_len]
# vid_pred = mil_pred[i].detach().cpu().numpy()
vid_pred = 0
results.append(frm_pred)
vid_preds.append(vid_pred)
frm_preds.append(frm_pred)
vid_lens.append(vid_len)
labels.append(label_)
# backward
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_value.append(loss.data.item())
timer["model"] += self.split_time()
vid_preds = np.array(vid_preds)
frm_preds = np.array(frm_preds)
vid_lens = np.array(vid_lens)
labels = np.array(labels)
loader.dataset.label_update(results, indexs)
# cmap = cmAP(vid_preds, labels)
cmap = 0
self.train_writer.add_scalar("acc", cmap, self.global_step)
self.train_writer.add_scalar("loss", np.mean(loss_value), self.global_step)
# statistics
self.lr = self.optimizer.param_groups[0]["lr"]
self.train_writer.add_scalar("lr", self.lr, self.global_step)
timer["statistics"] += self.split_time()
# statistics of time consumption and loss
self.print_log("\tMean training loss: {:.4f}.".format(np.mean(loss_value)))
self.print_log("\tAcc score: {:.3f}%".format(cmap))
# Log
wb_dict["train loss"] = np.mean(loss_value)
wb_dict["train acc"] = cmap
if save_model:
state_dict = self.model.state_dict()
weights = OrderedDict(
[[k.split("module.")[-1], v.cpu()] for k, v in state_dict.items()]
)
torch.save(
weights,
self.arg.model_saved_name + str(epoch) + ".pt",
)
return wb_dict
@torch.no_grad()
def eval(
self,
epoch,
wb_dict,
loader_name=["test"],
):
self.model.eval()
self.print_log("Eval epoch: {}".format(epoch + 1))
vid_preds = []
frm_preds = []
vid_lens = []
labels = []
for ln in loader_name:
loss_value = []
step = 0
process = tqdm(self.data_loader[ln])
for batch_idx, (data, label, target, mask, index, soft_label) in enumerate(
process
):
data = data.float().cuda(self.output_device)
label = label.cuda(self.output_device)
mask = mask.cuda(self.output_device)
ab_labels = torch.cat([label, torch.ones(label.size(0), 1).cuda()], -1)
# forward
frm_scrs = self.model(data)
'''Loc LOSS'''
target = target.cuda(self.output_device)
''' into one hot'''
ground_truth_flat = target.view(-1)
one_hot_ground_truth = F.one_hot(ground_truth_flat, num_classes=5)
''' into one hot'''
frm_scrs_re = rearrange(frm_scrs, "n t c -> (n t) c")
'''Loc LOSS'''
'''Loc LOSS'''
loss = cross_entropy_loss(
frm_scrs_re, one_hot_ground_truth
)
'''Loc LOSS'''
loss_value.append(loss.data.item())
for i in range(data.size(0)):
frm_scr = frm_scrs[i]
label_ = label[i].cpu().numpy()
mask_ = mask[i].cpu().numpy()
vid_len = mask_.sum()
frm_pred = F.softmax(frm_scr, -1).cpu().numpy()[:vid_len]
# vid_pred = vid_pred.cpu().numpy()
vid_pred = 0
vid_preds.append(vid_pred)
frm_preds.append(frm_pred)
vid_lens.append(vid_len)
labels.append(label_)
step += 1
vid_preds = np.array(vid_preds)
frm_preds = np.array(frm_preds)
vid_lens = np.array(vid_lens)
labels = np.array(labels)
# cmap = cmAP(vid_preds, labels)
cmap = 0
score = cmap
loss = np.mean(loss_value)
dmap, iou = dsmAP(
vid_preds,
frm_preds,
vid_lens,
self.arg.test_feeder_args["data_path"],
self.arg,
multi=True,
)
print("Classification map %f" % cmap)
for item in list(zip(iou, dmap)):
print("Detection map @ %f = %f" % (item[0], item[1]))
self.my_logger.append([epoch + 1, cmap] + dmap+[np.mean(dmap)])
wb_dict["val loss"] = loss
wb_dict["val acc"] = score
if score > self.best_acc:
self.best_acc = score
print("Acc score: ", score, " model: ", self.arg.model_saved_name)
if self.arg.phase == "train":
self.val_writer.add_scalar("loss", loss, self.global_step)
self.val_writer.add_scalar("acc", score, self.global_step)
self.print_log(
"\tMean {} loss of {} batches: {}.".format(
ln, len(self.data_loader[ln]), np.mean(loss_value)
)
)
self.print_log("\tAcc score: {:.3f}%".format(score))
return wb_dict
def start(self):
wb_dict = {}
if self.arg.phase == "train":
self.print_log("Parameters:\n{}\n".format(str(vars(self.arg))))
self.global_step = (
self.arg.start_epoch
* len(self.data_loader["train"])
/ self.arg.batch_size
)
for epoch in range(self.arg.start_epoch, self.arg.num_epoch):
save_model = ((epoch + 1) % self.arg.save_interval == 0) or (
epoch + 1 == self.arg.num_epoch
)
wb_dict = {"lr": self.lr}
# Train
wb_dict = self.train(epoch, wb_dict, save_model=save_model)
if epoch%1==0:
# Eval. on val set
wb_dict = self.eval(epoch, wb_dict, loader_name=["test"])
# Log stats. for this epoch
print("Epoch: {0}\nMetrics: {1}".format(epoch, wb_dict))
print(
"best accuracy: ",
self.best_acc,
" model_name: ",
self.arg.model_saved_name,
)
elif self.arg.phase == "test":
if not self.arg.test_feeder_args["debug"]:
wf = self.arg.model_saved_name + "_wrong.txt"
rf = self.arg.model_saved_name + "_right.txt"
else:
wf = rf = None
if self.arg.weights is None:
raise ValueError("Please appoint --weights.")
self.arg.print_log = False
self.print_log("Model: {}.".format(self.arg.model))
self.print_log("Weights: {}.".format(self.arg.weights))
wb_dict = self.eval(
epoch=0,
wb_dict=wb_dict,
loader_name=["test"],
wrong_file=wf,
result_file=rf,
)
print("Inference metrics: ", wb_dict)
self.print_log("Done.\n")
def str2bool(v):
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def import_class(name):
components = name.split(".")
mod = __import__(components[0])
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
if __name__ == "__main__":
parser = get_parser()
# load arg form config file
p = parser.parse_args()
if p.config is not None:
with open(p.config, "r") as f:
default_arg = yaml.safe_load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print("WRONG ARG: {}".format(k))
assert k in key
parser.set_defaults(**default_arg)
arg = parser.parse_args()
print("BABEL Action Recognition")
print("Config: ", arg)
init_seed(arg.seed)
processor = Processor(arg)
processor.start()
|