File size: 12,938 Bytes
a39be45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2020 achandrasekaran <arjun.chandrasekaran@tuebingen.mpg.de>
#
# Distributed under terms of the MIT license.
import math
import os
import os.path as osp
import pdb
import random
import shutil
import subprocess
import sys
import uuid
import cv2
import dutils
import numpy as np
import torch
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from torch.nn.functional import interpolate as intrp
"""
Visualize input and output motion sequences and labels
"""
def get_smpl_skeleton():
"""Skeleton ordering so that you traverse joints in this order:
Left lower, Left upper, Spine, Neck, Head, Right lower, Right upper.
"""
return np.array(
[
# Left lower
[0, 1],
[1, 4],
[4, 7],
[7, 10],
# Left upper
[9, 13],
[13, 16],
[16, 18],
[18, 20],
# [20, 22],
# Spinal column
[0, 3],
[3, 6],
[6, 9],
[9, 12],
[12, 15],
# Right lower
[0, 2],
[2, 5],
[5, 8],
[8, 11],
# Right upper
[9, 14],
[14, 17],
[17, 19],
[19, 21],
# [21, 23],
]
)
def get_nturgbd_joint_names():
"""From paper:
1-base of the spine 2-middle of the spine 3-neck 4-head 5-left shoulder 6-left elbow 7-left wrist 8- left hand 9-right shoulder 10-right elbow 11-right wrist 12- right hand 13-left hip 14-left knee 15-left ankle 16-left foot 17- right hip 18-right knee 19-right ankle 20-right foot 21-spine 22- tip of the left hand 23-left thumb 24-tip of the right hand 25- right thumb
"""
# Joint names by AC, based on SMPL names
joint_names_map = {
0: "Pelvis",
12: "L_Hip",
13: "L_Knee",
14: "L_Ankle",
15: "L_Foot",
16: "R_Hip",
17: "R_Knee",
18: "R_Ankle",
19: "R_Foot",
1: "Spine1",
# 'Spine2',
20: "Spine3",
2: "Neck",
3: "Head",
# 'L_Collar',
4: "L_Shoulder",
5: "L_Elbow",
6: "L_Wrist",
7: "L_Hand",
21: "L_HandTip", # Not in SMPL
22: "L_Thumb", # Not in SMPL
# 'R_Collar',
8: "R_Shoulder",
9: "R_Elbow",
10: "R_Wrist",
11: "R_Hand",
23: "R_HandTip", # Not in SMPL
24: "R_Thumb", # Not in SMPL
}
return [joint_names_map[idx] for idx in range(len(joint_names_map))]
def get_smpl_joint_names():
# Joint names from SMPL Wiki
joint_names_map = {
0: "Pelvis",
1: "L_Hip",
4: "L_Knee",
7: "L_Ankle",
10: "L_Foot",
2: "R_Hip",
5: "R_Knee",
8: "R_Ankle",
11: "R_Foot",
3: "Spine1",
6: "Spine2",
9: "Spine3",
12: "Neck",
15: "Head",
13: "L_Collar",
16: "L_Shoulder",
18: "L_Elbow",
20: "L_Wrist",
22: "L_Hand",
14: "R_Collar",
17: "R_Shoulder",
19: "R_Elbow",
21: "R_Wrist",
23: "R_Hand",
}
# Return all joints except indices 22 (L_Hand), 23 (R_Hand)
return [joint_names_map[idx] for idx in range(len(joint_names_map) - 2)]
def get_nturgbd_skeleton():
"""Skeleton ordering such that you traverse joints in this order:
Left lower, Left upper, Spine, Neck, Head, Right lower, Right upper.
"""
return np.array(
[
# Left lower
[0, 12],
[12, 13],
[13, 14],
[14, 15],
# Left upper
[4, 20],
[4, 5],
[5, 6],
[6, 7],
[7, 21],
[7, 22], # --> L Thumb
# Spinal column
[0, 1],
[1, 20],
[20, 2],
[2, 3],
# Right lower
[0, 16],
[16, 17],
[17, 18],
[18, 19],
# Right upper
[20, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 24],
# [24, 11] --> R Thumb
[21, 22],
[23, 24],
]
)
def get_joint_colors(joint_names):
"""Return joints based on a color spectrum. Also, joints on
L and R should have distinctly different colors.
"""
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap("rainbow")
colors = [cmap(i) for i in np.linspace(0, 1, len(joint_names))]
colors = [np.array((c[2], c[1], c[0])) for c in colors]
return colors
def calc_angle_from_x(sk):
"""Given skeleton, calc. angle from x-axis"""
# Hip bone
id_l_hip = get_smpl_joint_names().index("L_Hip")
id_r_hip = get_smpl_joint_names().index("R_Hip")
pl, pr = sk[id_l_hip], sk[id_r_hip]
bone = np.array(pr - pl)
unit_v = bone / np.linalg.norm(bone)
# Angle with x-axis
pdb.set_trace()
x_ax = np.array([1, 0, 0])
x_angle = math.degrees(np.arccos(np.dot(x_ax, unit_v)))
"""
l_hip_z = seq[0, joint_names.index('L_Hip'), 2]
r_hip_z = seq[0, joint_names.index('R_Hip'), 2]
az = 0 if (l_hip_z > zroot and zroot > r_hip_z) else 180
"""
if bone[1] > 0:
x_angle = -x_angle
return x_angle
def calc_angle_from_y(sk):
"""Given skeleton, calc. angle from x-axis"""
# Hip bone
id_l_hip = get_smpl_joint_names().index("L_Hip")
id_r_hip = get_smpl_joint_names().index("R_Hip")
pl, pr = sk[id_l_hip], sk[id_r_hip]
bone = np.array(pl - pr)
unit_v = bone / np.linalg.norm(bone)
print(unit_v)
# Angle with x-axis
pdb.set_trace()
y_ax = np.array([0, 1, 0])
y_angle = math.degrees(np.arccos(np.dot(y_ax, unit_v)))
"""
l_hip_z = seq[0, joint_names.index('L_Hip'), 2]
r_hip_z = seq[0, joint_names.index('R_Hip'), 2]
az = 0 if (l_hip_z > zroot and zroot > r_hip_z) else 180
"""
# if bone[1] > 0:
# y_angle = - y_angle
seq_y_proj = bone * np.cos(np.deg2rad(y_angle))
print("Bone projected onto y-axis: ", seq_y_proj)
return y_angle
def viz_skeleton(
seq,
folder_p,
sk_type="smpl",
radius=1,
lcolor="#ff0000",
rcolor="#0000ff",
action="",
debug=False,
):
"""Visualize skeletons for given sequence and store as images.
Args:
seq (np.array): Array (frames) of joint positions.
Size depends on sk_type (see below).
if sk_type is 'smpl' then assume:
1. first 3 dims = translation.
2. Size = (# frames, 69)
elif sk_type is 'nturgbd', then assume:
1. no translation.
2. Size = (# frames, 25, 3)
folder_p (str): Path to root folder containing visualized frames.
Frames are dumped to the path: folder_p/frames/*.jpg
radius (float): Space around the subject?
Returns:
Stores skeleton sequence as jpg frames.
"""
joint_names = (
get_nturgbd_joint_names() if "nturgbd" == sk_type else get_smpl_joint_names()
)
n_j = n_j = len(joint_names)
az = 90
if "smpl" == sk_type:
# SMPL kinematic chain, joint list.
# NOTE that hands are skipped.
kin_chain = get_smpl_skeleton()
# Reshape flat pose features into (frames, joints, (x,y,z)) (skip trans)
seq = seq[:, 3:].reshape(-1, n_j, 3).cpu().detach().numpy()
elif "nturgbd" == sk_type:
kin_chain = get_nturgbd_skeleton()
az = 0
# Get color-spectrum for skeleton
colors = get_joint_colors(joint_names)
labels = [(joint_names[jidx[0]], joint_names[jidx[1]]) for jidx in kin_chain]
# xroot, yroot, zroot = 0.0, 0.0, 0.0
xroot, yroot, zroot = seq[0, 0, 0], seq[0, 0, 1], seq[0, 0, 2]
# seq = seq - seq[0, :, :]
# Change viewing angle so that first frame is in frontal pose
# az = calc_angle_from_x(seq[0]-np.array([xroot, yroot, zroot]))
# az = calc_angle_from_y(seq[0]-np.array([xroot, yroot, zroot]))
# Viz. skeleton for each frame
for t in range(seq.shape[0]):
# Fig. settings
fig = plt.figure(figsize=(7, 6)) if debug else plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection="3d")
for i, (j1, j2) in enumerate(kin_chain):
# Store bones
x = np.array([seq[t, j1, 0], seq[t, j2, 0]])
y = np.array([seq[t, j1, 1], seq[t, j2, 1]])
z = np.array([seq[t, j1, 2], seq[t, j2, 2]])
# Plot bones in skeleton
ax.plot(x, y, z, c=colors[i], marker="o", linewidth=2, label=labels[i])
# More figure settings
ax.set_title(action)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
# xroot, yroot, zroot = seq[t, 0, 0], seq[t, 0, 1], seq[t, 0, 2]
# pdb.set_trace()
ax.set_xlim3d(-radius + xroot, radius + xroot)
ax.set_ylim3d([-radius + yroot, radius + yroot])
ax.set_zlim3d([-radius + zroot, radius + zroot])
if True == debug:
ax.axis("on")
ax.grid(b=True)
else:
ax.axis("off")
ax.grid(b=None)
# Turn off tick labels
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.set_zticklabels([])
cv2.waitKey(0)
# ax.view_init(-75, 90)
# ax.view_init(elev=20, azim=90+az)
ax.view_init(elev=20, azim=az)
if True == debug:
ax.legend(bbox_to_anchor=(1.1, 1), loc="upper right")
pass
fig.savefig(osp.join(folder_p, "frames", "{0}.jpg".format(t)))
plt.close(fig)
# break
def write_vid_from_imgs(folder_p, fps):
"""Collate frames into a video sequence.
Args:
folder_p (str): Frame images are in the path: folder_p/frames/<int>.jpg
fps (float): Output frame rate.
Returns:
Output video is stored in the path: folder_p/video.mp4
"""
vid_p = osp.join(folder_p, "video.mp4")
cmd = [
"ffmpeg",
"-r",
str(int(fps)),
"-i",
osp.join(folder_p, "frames", "%d.jpg"),
"-y",
vid_p,
]
FNULL = open(os.devnull, "w")
retcode = subprocess.call(cmd, stdout=FNULL, stderr=subprocess.STDOUT)
if not 0 == retcode:
print(
"*******ValueError(Error {0} executing command: {1}*********".format(
retcode, " ".join(cmd)
)
)
shutil.rmtree(osp.join(folder_p, "frames"))
def viz_seq(seq, folder_p, sk_type, orig_fps=30.0, debug=False):
"""1. Dumps sequence of skeleton images for the given sequence of joints.
2. Collates the sequence of images into an mp4 video.
Args:
seq (np.array): Array of joint positions.
folder_p (str): Path to root folder that will contain frames folder.
sk_type (str): {'smpl', 'nturgbd'}
Return:
None. Path of mp4 video: folder_p/video.mp4
"""
# Delete folder if exists
if osp.exists(folder_p):
print("Deleting existing folder ", folder_p)
shutil.rmtree(folder_p)
# Create folder for frames
os.makedirs(osp.join(folder_p, "frames"))
# Dump frames into folder. Args: (data, radius, frames path)
viz_skeleton(seq, folder_p=folder_p, sk_type=sk_type, radius=1.2, debug=debug)
write_vid_from_imgs(folder_p, orig_fps)
return None
def viz_rand_seq(X, Y, dtype, epoch, wb, urls=None, k=3, pred_labels=None):
"""
Args:
X (np.array): Array (frames) of SMPL joint positions.
Y (np.array): Multiple labels for each frame in x \in X.
dtype (str): {'input', 'pred'}
k (int): # samples to viz.
urls (tuple): Tuple of URLs of the rendered videos from original mocap.
wb (dict): Wandb log dict.
Returns:
viz_ds (dict): Data structure containing all viz. info so far.
"""
import wandb
# `idx2al`: idx --> action label string
al2idx = dutils.read_json("data/action_label_to_idx.json")
idx2al = {al2idx[k]: k for k in al2idx}
# Sample k random seqs. to viz.
for s_idx in random.sample(list(range(X.shape[0])), k):
# Visualize a single seq. in path `folder_p`
folder_p = osp.join("viz", str(uuid.uuid4()))
viz_seq(seq=X[s_idx], folder_p=folder_p)
title = "{0} seq. {1}: ".format(dtype, s_idx)
acts_str = ", ".join([idx2al[l] for l in torch.unique(Y[s_idx])])
wb[title + urls[s_idx]] = wandb.Video(
osp.join(folder_p, "video.mp4"), caption="Actions: " + acts_str
)
if "pred" == dtype or "preds" == dtype:
raise NotImplementedError
print("Done viz. {0} seqs.".format(k))
return wb
|