File size: 10,360 Bytes
5de1792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import argparse, time
import os, random, shutil
import numpy as np
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from dataset import get_pretraining_set
from model.loss import *
from tools import AverageMeter, sum_para_cnt

global ws
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.0005, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[351], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--wd', '--weight-decay', default=1e-5, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')

parser.add_argument('--checkpoint-path', default='./checkpoint', type=str)

parser.add_argument('--pre-dataset', default='ntu60', type=str,
                    help='which dataset to use for self supervised training (ntu60 or ntu120)')
parser.add_argument('--protocol', default='cross_subject', type=str,
                    help='training protocol cross_view/cross_subject/cross_setup')
parser.add_argument('--moda', default='joint', type=str,
                    help='joint, motion , bone')
parser.add_argument('--backbone', default='DSTE', type=str,
                    help='DSTE or STTR')



def main():
    args = parser.parse_args()
    # pretraining dataset and protocol
    from options import options_pretraining as options 
    if args.pre_dataset == 'pku_v2' and args.protocol == 'cross_subject':
        opts = options.opts_pku_v2_xsub()
    elif args.pre_dataset == 'ntu60' and args.protocol == 'cross_view':
        opts = options.opts_ntu_60_cross_view()
    elif args.pre_dataset == 'ntu60' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_60_cross_subject()
    elif args.pre_dataset == 'ntu120' and args.protocol == 'cross_setup':
        opts = options.opts_ntu_120_cross_setup()
    elif args.pre_dataset == 'ntu120' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_120_cross_subject()
    # create model
    
    if args.backbone == 'DSTE':
        from model.DSTE import USDRL
        model = USDRL(**opts.encoder_args)
    elif args.backbone == 'STTR':
        from model.STTR import USDRL
        model = USDRL(**opts.encoder_args)
    else:
        print('backbone must be DSTE or STTR')
        exit(0) 

    print("options",opts.train_feeder_args)
    print("options",opts.encoder_args)
    print(model)
    print(args)
    print('para count:', sum_para_cnt(model)/1e6, 'M')

    #exit(0)
    model = torch.nn.DataParallel(model)
    model = model.cuda()      

    criterion = nn.MSELoss().cuda()
    optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
    
    # optionally resume from a checkpoint
    #args.resume = './checkpoint/exp_name/checkpoint_0300.pth.tar'
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if torch.cuda.is_available():
                checkpoint = torch.load(args.resume)
            else:
                print('CUDA Error: torch.cuda.is_available() == False')
                exit(0)
                #checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'], strict=False)
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
            del checkpoint
            torch.cuda.empty_cache()
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))


    ## Data loading code
    train_dataset = get_pretraining_set(opts)
    trainloader_params = {
            'batch_size': args.batch_size,
            'shuffle': True,
            'num_workers': 8,
            'pin_memory': True,
            'prefetch_factor': 4,
            'persistent_workers': True
    }
    train_loader = torch.utils.data.DataLoader(train_dataset,  **trainloader_params)
    
    
    writer = SummaryWriter(args.checkpoint_path)

    scaler = torch.cuda.amp.GradScaler()
    print(ws)
    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args)
        # train for one epoch
        
        st_epoch = time.time()
        loss = train(scaler, train_loader, model, criterion, optimizer, epoch, args)
        print('epoch ' +str(epoch) + ' time:', time.time()-st_epoch, '\n')
        
        writer.add_scalar('train_loss', loss.avg, global_step=epoch)
        if epoch % 50 == 0:
            save_checkpoint({
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'optimizer' : optimizer.state_dict(),
                }, is_best=False, filename=args.checkpoint_path+'/checkpoint_{:04d}.pth.tar'.format(epoch,loss.avg))


def train(scaler, train_loader, model, criterion, optimizer, epoch, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, losses,],
        prefix="Epoch: [{}] Lr_rate [{}]".format(epoch,optimizer.param_groups[0]['lr']))

    # switch to train mode
    model.train()
    end = time.time()
    for i, (data_v1, data_v2, data_v3, data_v4) in enumerate(train_loader):
        # measure data loading time
        for k in loss_rcd.keys():
            loss_rcd[k].reset()
        data_time.update(time.time() - end)
        if torch.cuda.is_available():
            data_v1 = data_v1.float().cuda()
            data_v2 = data_v2.float().cuda()
            data_v3 = data_v3.float().cuda()
            data_v4 = data_v4.float().cuda()
        optimizer.zero_grad()
        with torch.cuda.amp.autocast():
            
            z_t_list, z_s_list, z_i_list = model(data_v1, data_v2, data_v3, data_v4) # [512, 4096]

            # Similarity
            sim_t = similarity(z_t_list, criterion)
            sim_s = similarity(z_s_list, criterion)
            sim_i = similarity(z_i_list, criterion)
            sim = sim_i + 0.5 * (sim_t + sim_s)

            B, _ = z_t_list[0].shape

            # Variance & AutoCov
            vac_t = sum([v_ac(x) for x in z_t_list])
            vac_s = sum([v_ac(x) for x in z_s_list])
            vac_i = sum([v_ac(x) for x in z_i_list])
            vac = vac_i + 0.5 * (vac_t + vac_s)

            # cross correlation = Invariance + Reudce Redundancy
            xcorr_t = cal_xc(z_t_list)
            xcorr_s = cal_xc(z_s_list)
            xcorr_i = cal_xc(z_i_list)
            xcorr = xcorr_i + 0.5 * (xcorr_s + xcorr_t) 

            # Total loss, Multi-Grained Feature Decorrelation
            loss = sim * ws['sim'] + vac * ws['vac'] + xcorr * ws['xcorr']
        
        losses.update(loss.item(), B)
        loss_rcd['vac'].update(vac.item(), B)        
        loss_rcd['sim'].update(sim.item(), B)
        loss_rcd['xcorr'].update(xcorr.item(), B)
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()

        batch_time.update(time.time() - end)
        end = time.time()
        if i + 1 == len(train_loader):
            progress.display(i)
            s = str(epoch) + '\t'
            for k in loss_rcd.keys():
                s += loss_rcd[k].get_str() + '  '
            print(s)
    return losses


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix
    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries),flush=True)
    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'

def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate based on schedule"""
    lr = args.lr
    for milestone in args.schedule:
        lr *= 0.1 if epoch >= milestone else 1.
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr



if __name__ == '__main__':
    #exit(0)
    seed = 0
    random.seed(seed)         # Python随机库的种子
    np.random.seed(seed)      # NumPy随机库的种子
    torch.manual_seed(seed)   # PyTorch随机库的种子
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)  # 如果使用多GPU
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    ws = {
        'sim': 5,
        'vac': 1.,
        'xcorr': 1e-3
        }
    args = parser.parse_args()
    loss_rcd= {}
    for k in ws.keys():
        loss_rcd[k] = AverageMeter(k, '.5e')
    main()