File size: 9,079 Bytes
5de1792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from dataset import get_finetune_training_set, get_finetune_validation_set
import argparse, time, os, random
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.utils.data
import numpy as np
from sklearnex import patch_sklearn, unpatch_sklearn
patch_sklearn()
from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score
from tools import sum_para_cnt, remove_prefix


# change for action recogniton

random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
                    help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=80, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=30., type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[50, 70, ], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by a ratio)')

parser.add_argument('--wd', '--weight-decay', default=0., type=float,
                    metavar='W', help='weight decay (default: 0.)',
                    dest='weight_decay')

parser.add_argument('--pretrained', default='', type=str,
                    help='path to moco pretrained checkpoint')

parser.add_argument('--finetune-dataset', default='ntu60', type=str,
                    help='which dataset to use for finetuning')

parser.add_argument('--protocol', default='cross_view', type=str,
                    help='traiining protocol of ntu')
parser.add_argument('--moda', default='joint', type=str,
                    help='joint, motion , bone')
parser.add_argument('--backbone', default='DSTE', type=str,
                    help='DSTE or STTR')
parser.add_argument('--knn-neighbours', default=1, type=int,
                    help='number of neighbours used for KNN.')

best_acc1 = 0
def load_pretrained(model, pretrained):
    if os.path.isfile(pretrained):
        print("=> loading checkpoint '{}'".format(pretrained))
        checkpoint = torch.load(pretrained, map_location="cpu")

        # rename pre-trained keys
        state_dict = checkpoint['state_dict']
        
        state_dict = remove_prefix(state_dict)
        

        
        msg = model.load_state_dict(state_dict, strict=False)
        print("message", msg)
        
        assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}

        print("=> loaded pre-trained model '{}'".format(pretrained))
    else:
        print("=> no checkpoint found at '{}'".format(pretrained))


def knn(data_train, data_test, label_train, label_test, nn=9):
    label_train = np.asarray(label_train)
    label_test = np.asarray(label_test)
    print("Number of KNN Neighbours = ", nn)
    print("training feature and labels", data_train.shape, len(label_train))
    print("test feature and labels", data_test.shape, len(label_test))
    # preprocessing.normalize(data_train)
    # packge <prereocessing> use cpu, we can use gpu(CUDA) to accelaerate this operation.
    # preprocessing.normalize(data_test)
    Xtr_Norm = data_train
    Xte_Norm = data_test
    knn = KNeighborsClassifier(n_neighbors=nn,
                               metric='cosine',
                               n_jobs=24)  # , metric='cosine'#'mahalanobis', metric_params={'V': np.cov(data_train)})

    a = time.time()
    knn.fit(Xtr_Norm, label_train)
    b = time.time()
    pred = knn.predict(Xte_Norm)
    acc = accuracy_score(pred, label_test)

    return acc, str(b-a)[:5]


def test_extract_hidden(model, data_train, data_eval, args):
    
    model.eval()
    print("Extracting training features")
    label_train_list = []
    hidden_array_train_list = []
    for ith, (jt, js, bt, bs, mt, ms, label) in tqdm(enumerate(data_train)):
        jt = jt.float().cuda(non_blocking=True)
        js = js.float().cuda(non_blocking=True)
        bt = bt.float().cuda(non_blocking=True)
        bs = bs.float().cuda(non_blocking=True)  
        mt = mt.float().cuda(non_blocking=True)
        ms = ms.float().cuda(non_blocking=True) 
        label = label.long().cuda()


        en_hi = model(jt, js, bt, bs, mt, ms, knn_eval=True)
         
        label_train_list.append(label)
        hidden_array_train_list.append(en_hi)
    
    label_train = torch.cat(label_train_list).cpu().numpy()
    hidden_array_train = torch.nn.functional.normalize(torch.cat(hidden_array_train_list), p=2, dim=1).cpu().numpy()
    print("Extracting validation features")
    label_eval_list = []
    hidden_array_eval_list = []

    for ith, (jt, js, bt, bs, mt, ms, label) in tqdm(enumerate(data_eval)):
        jt = jt.float().cuda(non_blocking=True)
        js = js.float().cuda(non_blocking=True)
        bt = bt.float().cuda(non_blocking=True)
        bs = bs.float().cuda(non_blocking=True)  
        mt = mt.float().cuda(non_blocking=True)
        ms = ms.float().cuda(non_blocking=True)  
        label = label.long().cuda()
        en_hi = model(jt, js, bt, bs, mt, ms, knn_eval=True)

        label_eval_list.append(label)
        hidden_array_eval_list.append(en_hi)
    label_eval = torch.cat(label_eval_list).cpu().numpy()
    hidden_array_eval = torch.nn.functional.normalize(torch.cat(hidden_array_eval_list), p=2, dim=1).cpu().numpy()

    return hidden_array_train, hidden_array_eval, label_train, label_eval




def clustering_knn_acc(model, train_loader, eval_loader, knn_neighbours=1, args=None):
    with torch.no_grad():
        hi_train, hi_eval, label_train, label_eval = test_extract_hidden(model, train_loader, eval_loader, args)
    knn_acc_1, time_cost = knn(hi_train, hi_eval, label_train, label_eval, nn=knn_neighbours)
    knn_acc_au = knn_acc_1

    return knn_acc_1, knn_acc_au, time_cost


def main():
    
    args = parser.parse_args()
    if not os.path.exists(args.pretrained):
        print(args.pretrained, ' not found!')
        exit(0)
    # Simply call main_worker function
    main_worker(args)


def main_worker(args):

    # training dataset
    from options  import options_downstream as options 
    if args.finetune_dataset== 'pku_v2' and args.protocol == 'cross_subject':
        opts = options.opts_pku_v2_xsub()
    elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_view':
        opts = options.opts_ntu_60_cross_view()
    elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_60_cross_subject()
    elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_setup':
        opts = options.opts_ntu_120_cross_setup()
    elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_120_cross_subject()

  
    # create model
    print("=> creating model")

    if args.backbone == 'DSTE':
        from model.DSTE import Downstream
        model = Downstream(**opts.encoder_args)
    elif args.backbone == 'STTR':
        from model.STTR import Downstream
        model = Downstream(**opts.encoder_args)
    print(sum_para_cnt(model)/1e6)
    print(model)
    print("options: \n",opts.encoder_args,'\n',opts.train_feeder_args,'\n',opts.test_feeder_args)
    

    # freeze all layers
    for _, param in model.named_parameters():
        param.requires_grad = False

    # load from pre-trained  model
    load_pretrained(model, args.pretrained)

    model = model.cuda()

    # Data loading code

    train_dataset = get_finetune_training_set(opts)
    val_dataset = get_finetune_validation_set(opts)
    trainloader_params = {
            'batch_size': args.batch_size,
            'shuffle': True,
            'num_workers': 1,
            'pin_memory': True,
            'prefetch_factor': 1,
            'persistent_workers': False
    }
    valloader_params = {
            'batch_size': args.batch_size,
            'shuffle': False,
            'num_workers': 1,
            'pin_memory': True,
            'prefetch_factor': 1,
            'persistent_workers': False
    }
    train_loader = torch.utils.data.DataLoader(train_dataset,  **trainloader_params)
    val_loader = torch.utils.data.DataLoader(val_dataset,  **valloader_params)

    # Extract frozen features of  the  pre-trained query encoder
    # train and evaluate a KNN  classifier on extracted features
    acc1, _, tc = clustering_knn_acc(model, train_loader, val_loader,
                                      knn_neighbours=args.knn_neighbours, args=args)
    print(args.pretrained, 'Knn time cost:' + tc + "s\tKnn Without AE= ", acc1)#, " Knn With AE=", acc_au)


if __name__ == '__main__':
    
    main()