File size: 13,783 Bytes
5de1792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import argparse
import os
import random
import shutil
import time
import warnings

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np

from tools import AverageMeter, remove_prefix, sum_para_cnt

random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
# change for action recogniton
from dataset import get_finetune_training_set,get_finetune_validation_set

global best_acc1
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')

parser.add_argument('--epochs', default=150, type=int, metavar='N',
                    help='number of total epochs to run')

parser.add_argument('-b', '--batch-size', default=256, type=int,metavar='N')

parser.add_argument('--lr', '--learning-rate', default=30., type=float,
                    metavar='LR', help='initial learning rate', dest='lr')

parser.add_argument('--schedule', default=[120, 140,], nargs='*', type=int,
                    help='learning rate schedule (when to drop lr by a ratio)')

parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
                    metavar='W', help='weight decay (default: 0.)',
                    dest='weight_decay')

parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')

parser.add_argument('--pretrained', default='', type=str,
                    help='path to moco pretrained checkpoint')

parser.add_argument('--finetune-dataset', default='ntu60', type=str,
                    help='which dataset to use for finetuning')

parser.add_argument('--protocol', default='cross_view', type=str,
                    help='traiining protocol of ntu')

parser.add_argument('--moda', default='joint', type=str,
                    help='joint, motion , bone')

parser.add_argument('--backbone', default='DSTE', type=str,
                    help='DSTE or STTR')

best_acc1 = 0



def load_encoder(model, pretrained):
    if os.path.isfile(pretrained):
        print("=> loading checkpoint '{}'".format(pretrained))
        checkpoint = torch.load(pretrained, map_location="cpu")
        # rename pre-trained keys
        state_dict = checkpoint['state_dict']
        state_dict = remove_prefix(state_dict)
        msg = model.load_state_dict(state_dict, strict=False)
        print("message",msg)
        assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
        
        print("=> loaded pre-trained model '{}'".format(pretrained))
    else:
        print("=> no checkpoint found at '{}'".format(pretrained))


def load_pretrained(args, model):
    
    load_encoder(model,args.pretrained)
    finetune_encoder = True

    return finetune_encoder



def main():
    args = parser.parse_args()
    if not os.path.exists(args.pretrained):
        print(args.pretrained, ' not found!')
        exit(0)
    # Simply call main_worker function
    main_worker(args)


def main_worker(args):
    global best_acc1

    # create model

    # training dataset
    from options  import options_downstream as options 
    if args.finetune_dataset == 'pku_v2' and args.protocol == 'cross_subject':
        opts = options.opts_pku_v2_xsub()
    elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_view':
        opts = options.opts_ntu_60_cross_view()
    elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_60_cross_subject()
    elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_setup':
        opts = options.opts_ntu_120_cross_setup()
    elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_subject':
        opts = options.opts_ntu_120_cross_subject()
    
    if args.backbone == 'DSTE':
        from model.DSTE import Downstream
        model = Downstream(**opts.encoder_args)
    elif args.backbone == 'STTR':
        from model.STTR import Downstream
        model = Downstream(**opts.encoder_args)
    else:
        print('backbone must be DSTE or STTR')
        exit(0) 

    print(sum_para_cnt(model)/1e6, 'M')
    print("options",opts.encoder_args,opts.train_feeder_args,opts.test_feeder_args, '\n',args)

    if args.pretrained:
        # freeze all layers but the last fc
        for name, param in model.named_parameters():
            #break
            if not name.startswith('fc'):
                param.requires_grad = False
            else:
                print('params',name)
        # init the fc layer
        model.fc.weight.data.normal_(mean=0.0, std=0.01)
        model.fc.bias.data.zero_()

    # load from pre-trained model
    finetune_encoder= load_pretrained(args, model)
    model = nn.DataParallel(model)
    model = model.cuda()
    
    
    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    # optimize only the linear classifier
    parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
 
    if args.pretrained:
        assert len(parameters) == 2  # fc.weight, fc.bias
        
    optimizer = torch.optim.SGD(parameters, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    for parm in optimizer.param_groups:
        print ("optimize parameters lr ",parm['lr'])


    ## Data loading code

    train_dataset = get_finetune_training_set(opts)
    val_dataset = get_finetune_validation_set(opts)

    trainloader_params = {
            'batch_size': args.batch_size,
            'shuffle': True,
            'num_workers': 8,
            'pin_memory': True,
            'prefetch_factor': 4,
            'persistent_workers': True
    }
    valloader_params = {
            'batch_size': args.batch_size,
            'shuffle': False,
            'num_workers': 8,
            'pin_memory': True,
            'prefetch_factor': 4,
            'persistent_workers': True
    }
    train_loader = torch.utils.data.DataLoader(train_dataset,  **trainloader_params)
    val_loader = torch.utils.data.DataLoader(val_dataset,  **valloader_params)

    print('lr =', args.lr)
    for epoch in range(0, 10 + args.epochs):

        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args)

        # evaluate on validation set
        if (epoch + 1) % 5 == 0:
            acc1 = validate(val_loader, model, criterion, args)
        else:
            acc1 = 0
            
        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        if is_best:
            print("found new best accuracy:= ",acc1)
            best_acc1 = max(acc1, best_acc1)
            #state_dict = {
            #            'epoch': epoch + 1,
            #            'acc': best_acc1, 
            #            'state_dict': model.state_dict(),
            #            #'optimizer' : optimizer.state_dict(),
            #        }
            
        # sanity check 
        if epoch == 0:
            if finetune_encoder:
                sanity_check_encoder(model.state_dict(), args.pretrained)
    print(args.pretrained, "class head Final best accuracy",best_acc1)


def train(train_loader, model, criterion, optimizer, epoch, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    """
    Switch to eval mode:
    Under the protocol of linear classification on frozen features/models,
    it is not legitimate to change any part of the pre-trained model.
    BatchNorm in train mode may revise running mean/std (even if it receives
    no gradient), which are part of the model parameters too.
    """
    model.eval()
    
    end = time.time()
    for i, (jt, js, bt, bs, mt, ms, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        jt = jt.float().cuda(non_blocking=True)
        js = js.float().cuda(non_blocking=True)
        bt = bt.float().cuda(non_blocking=True)
        bs = bs.float().cuda(non_blocking=True)
        mt = mt.float().cuda(non_blocking=True)
        ms = ms.float().cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)
        # compute output
        output = model(jt, js, bt, bs, mt, ms, args)
        loss = criterion(output, target)
        
        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), jt.size(0))
        top1.update(acc1[0], jt.size(0))
        top5.update(acc5[0], jt.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i + 1 == len(train_loader):
            progress.display(i)


def validate(val_loader, model, criterion, args):
    batch_time = AverageMeter('Time', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(val_loader),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()
    with torch.no_grad():
        end = time.time()
        for i, (jt, js, bt, bs, mt, ms, target) in enumerate(val_loader):            
            jt = jt.float().cuda(non_blocking=True)
            js = js.float().cuda(non_blocking=True)
            bt = bt.float().cuda(non_blocking=True)
            bs = bs.float().cuda(non_blocking=True)
            mt = mt.float().cuda(non_blocking=True)
            ms = ms.float().cuda(non_blocking=True)
            target = target.cuda(non_blocking=True)
            # compute output
            output = model(jt, js, bt, bs, mt, ms, args)
            loss = criterion(output, target)
            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), jt.size(0))
            top1.update(acc1[0], jt.size(0))
            top5.update(acc5[0], jt.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i+ 1 == len(val_loader):
                progress.display(i)

        # TODO: this should also be done with the ProgressMeter
        print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
              .format(top1=top1, top5=top5))
        

    return top1.avg


def sanity_check_encoder(state_dict, pretrained_weights):
    """
    Linear classifier should not change any weights other than the linear layer.
    This sanity check asserts nothing wrong happens (e.g., BN stats updated).
    """
    print("=> loading '{}' for sanity check".format(pretrained_weights))
    checkpoint = torch.load(pretrained_weights, map_location="cpu")
    state_dict_pre = remove_prefix(checkpoint['state_dict'])
    state_dict = remove_prefix(state_dict)
    for k in list(state_dict.keys()):
        # only ignore fc layer
        if 'fc.weight' in k or 'fc.bias' in k or k.find('projector') != -1:
            continue

        # name in pretrained model
        k_pre = 'module.' + k
        k_pre = k
        assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
            '{} is changed in linear classifier training.'.format(k)

    print("=> sanity check passed.")


class ProgressMeter(object):

    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix
    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries),flush=True)

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'


def adjust_learning_rate(optimizer, epoch, args):
    """Decay the learning rate based on schedule"""
    lr = args.lr
    for milestone in args.schedule:
        lr *= 0.1 if epoch >= milestone else 1.
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.reshape(1, -1).expand_as(pred))
        
        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    seed = 0
    random.seed(seed)         # Python随机库的种子
    np.random.seed(seed)      # NumPy随机库的种子
    torch.manual_seed(seed)   # PyTorch随机库的种子
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)  # 如果使用多GPU
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    main()