File size: 13,783 Bytes
5de1792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import numpy as np
from tools import AverageMeter, remove_prefix, sum_para_cnt
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
# change for action recogniton
from dataset import get_finetune_training_set,get_finetune_validation_set
global best_acc1
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,metavar='N')
parser.add_argument('--lr', '--learning-rate', default=30., type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 140,], nargs='*', type=int,
help='learning rate schedule (when to drop lr by a ratio)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
metavar='W', help='weight decay (default: 0.)',
dest='weight_decay')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--pretrained', default='', type=str,
help='path to moco pretrained checkpoint')
parser.add_argument('--finetune-dataset', default='ntu60', type=str,
help='which dataset to use for finetuning')
parser.add_argument('--protocol', default='cross_view', type=str,
help='traiining protocol of ntu')
parser.add_argument('--moda', default='joint', type=str,
help='joint, motion , bone')
parser.add_argument('--backbone', default='DSTE', type=str,
help='DSTE or STTR')
best_acc1 = 0
def load_encoder(model, pretrained):
if os.path.isfile(pretrained):
print("=> loading checkpoint '{}'".format(pretrained))
checkpoint = torch.load(pretrained, map_location="cpu")
# rename pre-trained keys
state_dict = checkpoint['state_dict']
state_dict = remove_prefix(state_dict)
msg = model.load_state_dict(state_dict, strict=False)
print("message",msg)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print("=> loaded pre-trained model '{}'".format(pretrained))
else:
print("=> no checkpoint found at '{}'".format(pretrained))
def load_pretrained(args, model):
load_encoder(model,args.pretrained)
finetune_encoder = True
return finetune_encoder
def main():
args = parser.parse_args()
if not os.path.exists(args.pretrained):
print(args.pretrained, ' not found!')
exit(0)
# Simply call main_worker function
main_worker(args)
def main_worker(args):
global best_acc1
# create model
# training dataset
from options import options_downstream as options
if args.finetune_dataset == 'pku_v2' and args.protocol == 'cross_subject':
opts = options.opts_pku_v2_xsub()
elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_view':
opts = options.opts_ntu_60_cross_view()
elif args.finetune_dataset== 'ntu60' and args.protocol == 'cross_subject':
opts = options.opts_ntu_60_cross_subject()
elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_setup':
opts = options.opts_ntu_120_cross_setup()
elif args.finetune_dataset== 'ntu120' and args.protocol == 'cross_subject':
opts = options.opts_ntu_120_cross_subject()
if args.backbone == 'DSTE':
from model.DSTE import Downstream
model = Downstream(**opts.encoder_args)
elif args.backbone == 'STTR':
from model.STTR import Downstream
model = Downstream(**opts.encoder_args)
else:
print('backbone must be DSTE or STTR')
exit(0)
print(sum_para_cnt(model)/1e6, 'M')
print("options",opts.encoder_args,opts.train_feeder_args,opts.test_feeder_args, '\n',args)
if args.pretrained:
# freeze all layers but the last fc
for name, param in model.named_parameters():
#break
if not name.startswith('fc'):
param.requires_grad = False
else:
print('params',name)
# init the fc layer
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
# load from pre-trained model
finetune_encoder= load_pretrained(args, model)
model = nn.DataParallel(model)
model = model.cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
# optimize only the linear classifier
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
if args.pretrained:
assert len(parameters) == 2 # fc.weight, fc.bias
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
for parm in optimizer.param_groups:
print ("optimize parameters lr ",parm['lr'])
## Data loading code
train_dataset = get_finetune_training_set(opts)
val_dataset = get_finetune_validation_set(opts)
trainloader_params = {
'batch_size': args.batch_size,
'shuffle': True,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
valloader_params = {
'batch_size': args.batch_size,
'shuffle': False,
'num_workers': 8,
'pin_memory': True,
'prefetch_factor': 4,
'persistent_workers': True
}
train_loader = torch.utils.data.DataLoader(train_dataset, **trainloader_params)
val_loader = torch.utils.data.DataLoader(val_dataset, **valloader_params)
print('lr =', args.lr)
for epoch in range(0, 10 + args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
if (epoch + 1) % 5 == 0:
acc1 = validate(val_loader, model, criterion, args)
else:
acc1 = 0
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
if is_best:
print("found new best accuracy:= ",acc1)
best_acc1 = max(acc1, best_acc1)
#state_dict = {
# 'epoch': epoch + 1,
# 'acc': best_acc1,
# 'state_dict': model.state_dict(),
# #'optimizer' : optimizer.state_dict(),
# }
# sanity check
if epoch == 0:
if finetune_encoder:
sanity_check_encoder(model.state_dict(), args.pretrained)
print(args.pretrained, "class head Final best accuracy",best_acc1)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
"""
Switch to eval mode:
Under the protocol of linear classification on frozen features/models,
it is not legitimate to change any part of the pre-trained model.
BatchNorm in train mode may revise running mean/std (even if it receives
no gradient), which are part of the model parameters too.
"""
model.eval()
end = time.time()
for i, (jt, js, bt, bs, mt, ms, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
jt = jt.float().cuda(non_blocking=True)
js = js.float().cuda(non_blocking=True)
bt = bt.float().cuda(non_blocking=True)
bs = bs.float().cuda(non_blocking=True)
mt = mt.float().cuda(non_blocking=True)
ms = ms.float().cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(jt, js, bt, bs, mt, ms, args)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), jt.size(0))
top1.update(acc1[0], jt.size(0))
top5.update(acc5[0], jt.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i + 1 == len(train_loader):
progress.display(i)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (jt, js, bt, bs, mt, ms, target) in enumerate(val_loader):
jt = jt.float().cuda(non_blocking=True)
js = js.float().cuda(non_blocking=True)
bt = bt.float().cuda(non_blocking=True)
bs = bs.float().cuda(non_blocking=True)
mt = mt.float().cuda(non_blocking=True)
ms = ms.float().cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(jt, js, bt, bs, mt, ms, args)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), jt.size(0))
top1.update(acc1[0], jt.size(0))
top5.update(acc5[0], jt.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i+ 1 == len(val_loader):
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def sanity_check_encoder(state_dict, pretrained_weights):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = remove_prefix(checkpoint['state_dict'])
state_dict = remove_prefix(state_dict)
for k in list(state_dict.keys()):
# only ignore fc layer
if 'fc.weight' in k or 'fc.bias' in k or k.find('projector') != -1:
continue
# name in pretrained model
k_pre = 'module.' + k
k_pre = k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries),flush=True)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
seed = 0
random.seed(seed) # Python随机库的种子
np.random.seed(seed) # NumPy随机库的种子
torch.manual_seed(seed) # PyTorch随机库的种子
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # 如果使用多GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
main()
|