File size: 11,032 Bytes
41e3185 95b89ff 41e3185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
from libs.class_id_map import get_id2class_map
from libs.metric import AverageMeter, BoundaryScoreMeter, ScoreMeter
from libs.postprocess import PostProcessor
from tqdm import tqdm
from prompt.tools import (segment_video_labels, gen_label, gen_label_split,
generate_segment_features,generate_split_features,
create_logits, split_feature, split_gt, split_gt_feature, split_mixed_class)
from prompt.text_prompt import text_prompt_for_clip
def train(
train_loader: DataLoader,
model: nn.Module,
model_text: nn.Module,
class_text_list,
joint_text_list,
criterion_cls: nn.Module,
criterion_bound: nn.Module,
criterion_contrast: nn.Module,
lambda_bound_loss: float,
optimizer: optim.Optimizer,
dataset_name,
device, output_device,
) -> float:
losses = AverageMeter("Loss", ":.4e")
# switch training mode
model.train()
for sample in tqdm(train_loader):
x = sample["feature"]
t = sample["label"]
b = sample["boundary"]
mask = sample["mask"]
x = x.to(output_device)
t = t.to(output_device)
b = b.to(output_device)
mask = mask.to(output_device)
joint_text_list = joint_text_list.to(output_device)
optimizer.zero_grad()
batch_size = x.shape[0]
joint_text_embedding = model_text(joint_text_list).float()
# compute output and loss
output_cls, output_bound, output_feature, output_feature_split, logit_scale = model(x, mask, joint_text_embedding)
#Action-text pairs
t_segment = segment_video_labels(t)
label = [i[0] for seg in t_segment for i in seg]
label_g = gen_label(label)
texts = list()
for single_label in label:
text_item = class_text_list[single_label].unsqueeze(dim=0)
texts.append(text_item)
texts = torch.cat(texts).cuda(output_device)
text_embedding = model_text(texts).float()
action_embeddings = []
if isinstance(output_feature, list):
for i in range(len(output_feature)):
action_embedding = generate_segment_features(output_feature[i], t_segment, output_device)
action_embeddings.append(action_embedding)
#Clip-text pairs
gt_split, feature_split = split_mixed_class(t_segment,2)
flag = True
for i in feature_split:
if i!=[]:
flag=False
if flag ==True:
feature_split_embedding = None
else:
feature_split_embedding = generate_split_features(output_feature_split, feature_split, output_device)
text_split = text_prompt_for_clip(gt_split, dataset_name, "simple").cuda(output_device)
text_split_embedding = model_text(text_split).float()
label_split_g = gen_label_split(gt_split)
loss = 0.0
# Action segmentation loss
if isinstance(output_cls, list):
n = len(output_cls)
for out in output_cls:
loss += criterion_cls(out, t, x) / n
else:
loss += criterion_cls(output_cls, t, x)
# boundary regression loss
if isinstance(output_bound, list):
n = len(output_bound)
for out in output_bound:
loss += lambda_bound_loss * criterion_bound(out, b, mask) / n
else:
loss += lambda_bound_loss * criterion_bound(output_bound, b, mask)
# action-text contrastive loss
if isinstance(action_embeddings, list):
for i in range(len(action_embeddings)):
logits_per_image, logits_per_text = create_logits(action_embeddings[i], text_embedding, logit_scale[0])
ground_truth = torch.tensor(label_g, dtype=action_embedding.dtype, device=output_device)
loss_imgs = criterion_contrast(logits_per_image, ground_truth)
loss_texts = criterion_contrast(logits_per_text, ground_truth)
loss += 0.8 * ((loss_imgs + loss_texts) / 2)
if flag ==False:
# clip-text contrastive loss
logits_per_image, logits_per_text = create_logits(feature_split_embedding, text_split_embedding,
logit_scale[1])
ground_truth = torch.tensor(label_split_g, dtype=feature_split_embedding.dtype, device=output_device)
loss_imgs = criterion_contrast(logits_per_image, ground_truth)
loss_texts = criterion_contrast(logits_per_text, ground_truth)
loss += 0.5 * ((loss_imgs + loss_texts) / 2)
# record loss
losses.update(loss.item(), batch_size)
loss.backward()
optimizer.step()
return losses.avg
def validate(
val_loader: DataLoader,
model: nn.Module,
model_text: nn.Module,
joint_text_list,
criterion_cls: nn.Module,
criterion_bound: nn.Module,
lambda_bound_loss: float,
device,output_device,
dataset: str,
dataset_dir: str,
iou_thresholds: Tuple[float],
boundary_th: float,
tolerance: int,
refinement_method: Optional[str] = None
) -> Tuple[float, float, float, float, float, float, float, float, str]:
losses = AverageMeter("Loss", ":.4e")
postprocessor = PostProcessor(refinement_method, boundary_th)
scores_cls = ScoreMeter(
id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir),
iou_thresholds=iou_thresholds,
)
scores_bound = BoundaryScoreMeter(
tolerance=tolerance, boundary_threshold=boundary_th
)
scores_after_refinement = ScoreMeter(
id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir),
iou_thresholds=iou_thresholds,
)
# switch to evaluate mode
model.eval()
with torch.no_grad():
for sample in tqdm(val_loader):
x = sample["feature"]
t = sample["label"]
b = sample["boundary"]
mask = sample["mask"]
x = x.to(output_device)
t = t.to(output_device)
b = b.to(output_device)
mask = mask.to(output_device)
joint_text_list = joint_text_list.to(output_device)
batch_size = x.shape[0]
joint_text_embedding = model_text(joint_text_list).float()
# compute output and loss
output_cls, output_bound = model(x, mask, joint_text_embedding)
loss = 0.0
loss += criterion_cls(output_cls, t, x)
loss += lambda_bound_loss * criterion_bound(output_bound, b, mask)
# measure accuracy and record loss
losses.update(loss.item(), batch_size)
# calcualte accuracy and f1 score
output_cls = output_cls.to("cpu").data.numpy()
output_bound = output_bound.to("cpu").data.numpy()
t = t.to("cpu").data.numpy()
b = b.to("cpu").data.numpy()
mask = mask.to("cpu").data.numpy()
refined_output_cls = postprocessor(
output_cls, boundaries=output_bound, masks=mask
) #加上了边界的预测
# update score
scores_cls.update(output_cls, t, output_bound, mask) #The result of not utilizing boundary branch
scores_bound.update(output_bound, b, mask)
scores_after_refinement.update(refined_output_cls, t) #The result of utilizing boundary branch
cls_acc, edit_score, segment_f1s,maps = scores_cls.get_scores()
cls_acc, edit_score, segment_f1s,_ = scores_after_refinement.get_scores()
bound_acc, precision, recall, bound_f1s = scores_bound.get_scores()
return (
losses.avg,
cls_acc,
edit_score,
segment_f1s,
maps,
bound_acc,
precision,
recall,
bound_f1s,
)
def evaluate(
val_loader: DataLoader,
model: nn.Module,
model_text,
joint_text_list,
device: str,
boundary_th: float,
dataset: str,
dataset_dir: str,
iou_thresholds: Tuple[float],
tolerance: float,
result_path: str,
config : str,
refinement_method: Optional[str] = None,
) -> None:
postprocessor = PostProcessor(refinement_method, boundary_th)
scores_before_refinement = ScoreMeter(
id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir),
iou_thresholds=iou_thresholds,
)
scores_bound = BoundaryScoreMeter(
tolerance=tolerance, boundary_threshold=boundary_th
)
scores_after_refinement = ScoreMeter(
id2class_map=get_id2class_map(dataset, dataset_dir=dataset_dir),
iou_thresholds=iou_thresholds,
)
# switch to evaluate mode
model.eval()
with torch.no_grad():
for sample in tqdm(val_loader):
x = sample["feature"]
t = sample["label"]
b = sample["boundary"]
mask = sample["mask"]
x = x.to(device)
t = t.to(device)
b = b.to(device)
mask = mask.to(device)
joint_text_list = joint_text_list.to(device)
joint_text_embedding = model_text(joint_text_list).float()
# compute output and loss
output_cls, output_bound = model(x, mask, joint_text_embedding) # 1,52,1838 and 1,1,1838 N C T and N 1 T
# calcualte accuracy and f1 score
output_cls = output_cls.to("cpu").data.numpy()
output_bound = output_bound.to("cpu").data.numpy()
x = x.to("cpu").data.numpy()
t = t.to("cpu").data.numpy()
b = b.to("cpu").data.numpy()
mask = mask.to("cpu").data.numpy()
refined_output_cls = postprocessor(
output_cls, boundaries=output_bound, masks=mask
)
# update score
scores_before_refinement.update(output_cls, t)
scores_bound.update(output_bound, b, mask)
scores_after_refinement.update(refined_output_cls, t)
print("Before refinement:", scores_before_refinement.get_scores())
print("Boundary scores:", scores_bound.get_scores())
print("After refinement:", scores_after_refinement.get_scores())
# save logs
scores_before_refinement.save_scores(
os.path.join(result_path, "test_as_before_refine.csv")
)
scores_before_refinement.save_confusion_matrix(
os.path.join(result_path, "test_c_matrix_before_refinement.csv")
)
scores_bound.save_scores(os.path.join(result_path, "test_br.csv"))
scores_after_refinement.save_scores(
os.path.join(result_path, "test_as_after_majority_vote.csv")
)
scores_after_refinement.save_confusion_matrix(
os.path.join(result_path, "test_c_matrix_after_majority_vote.csv")
) |