File size: 9,214 Bytes
41e3185
 
 
 
 
 
 
 
 
 
 
 
 
 
4e16458
41e3185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed2b48
41e3185
 
5ed2b48
41e3185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
from typing import Any, Dict, List, Optional

import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torchvision.transforms.transforms import Compose
import pickle
import re

__all__ = ["ActionSegmentationDataset", "collate_fn"]

dataset_names = ["MCFS-22", "MCFS-130", "PKU-subject", "PKU-view", "LARA","BABEL3","BABEL1","BABEL2"]
modes = ["training", "validation", "trainval", "test"]

def get_displacements(sample):
    # input: C, T, V, M
    C, T, V, M = sample.shape
    final_sample = np.zeros((C, T, V, M))
    
    validFrames = (sample != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0
    start = validFrames.argmax()
    end = len(validFrames) - validFrames[::-1].argmax()
    sample = sample[:, start:end, :, :]

    t = sample.shape[1]
    # Shape: C, t-1, V, M
    disps = sample[:, 1:, :, :] - sample[:, :-1, :, :]
    # Shape: C, T, V, M
    final_sample[:, start:end-1, :, :] = disps

    return final_sample

def get_relative_coordinates(sample,
                             references=(0)):
    # input: C, T, V, M
    # references=(4, 8, 12, 16)
    C, T, V, M = sample.shape
    final_sample = np.zeros((C, T, V, M))
    
    validFrames = (sample != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0
    start = validFrames.argmax()
    end = len(validFrames) - validFrames[::-1].argmax()
    sample = sample[:, start:end, :, :]

    C, t, V, M = sample.shape
    rel_coords = []
    #for i in range(len(references)):
    ref_loc = sample[:, :, references, :]
    coords_diff = (sample.transpose((2, 0, 1, 3)) - ref_loc).transpose((1, 2, 0, 3))
    rel_coords.append(coords_diff)
    
    # Shape: C, t, V, M 
    rel_coords = np.vstack(rel_coords)
    # Shape: C, T, V, M
    final_sample[:, start:end, :, :] = rel_coords
    return final_sample

class ActionSegmentationDataset(Dataset):
    """ Action Segmentation Dataset """

    def __init__(
        self,
        dataset: str,
        transform: Optional[Compose] = None,
        mode: str = "training",
        split: int = 1,
        dataset_dir: str = "./dataset",
        csv_dir: str = "./csv",
    ) -> None:
        super().__init__()
        """
            Args:
                dataset: the name of dataset
                transform: torchvision.transforms.Compose([...])
                mode: training, validation, test
                split: which split of train, val and test do you want to use in csv files.(default:1)
                csv_dir: the path to the directory where the csv files are saved
        """

        assert (
            dataset in dataset_names
        ), "You have to choose dataset."
        self.transform = transform
        self.dataset = dataset
        print(dataset)
        self.babel = r"BABEL.*"  
        if not re.match(self.babel, dataset):
            if mode == "training":
                self.df = pd.read_csv(
                    os.path.join(csv_dir, dataset, "train{}.csv".format(split))
                ) #Get the (NUM, 3) file, where three are features, labels, and boundary labels
            elif mode == "validation":
                self.df = pd.read_csv(
                    os.path.join(csv_dir, dataset, "val{}.csv".format(split))
                )
            elif mode == "trainval":
                df1 = pd.read_csv(
                    os.path.join(csv_dir, dataset, "train{}.csv".format(split))
                )
                df2 = pd.read_csv(os.path.join(csv_dir, dataset, "val{}.csv".format(split)))
                self.df = pd.concat([df1, df2])
            elif mode == "test":
                self.df = pd.read_csv(
                    os.path.join(csv_dir, dataset, "test{}.csv".format(split))
                )
            else:
                assert (
                    mode in modes
                ), "You have to choose 'training', 'trainval', 'validation' or 'test' as the dataset mode."
            #    <libs.transformer.ToTensor object at 0x7f3ed3ff3550>和<libs.transformer.TempDownSamp object at 0x7f3ed402abb0>
           
            
        else:
            if mode == "training":
                with open('./dataset/'+str(self.dataset) +'/train_split'+str(self.dataset)[-1] +'.pkl',"rb") as f:
                    self.df = pickle.load(f,encoding="latin1")
            else:
                with open('./dataset/'+str(self.dataset) +'/val_split'+str(self.dataset)[-1] +'.pkl',"rb") as f:
                    self.df = pickle.load(f,encoding="latin1")

    def __len__(self) -> int:
        if re.match(self.babel, self.dataset):
            return len(self.df["X"])
        else:
            return len(self.df)

    def __getitem__(self, idx: int) -> Dict[str, Any]:

        if not re.match(self.babel, self.dataset):
            feature_path = self.df.iloc[idx]["feature"]
            label_path = self.df.iloc[idx]["label"]
            boundary_path = self.df.iloc[idx]["boundary"]
            
            # feature.shape = 617,150 -> 3, 617,25,2
            feature = np.load(feature_path, allow_pickle=True).astype(np.float32) #特征(C,24000,19,M)
            label = np.load(label_path).astype(np.int64)
            boundary = np.load(boundary_path).astype(np.float32)
        else:
            feature = self.df["X"][idx]
            label = self.df["L"][idx]
            boundary = np.zeros_like(label)
            boundary[1:] = label[1:] != label[:-1]
            boundary[0]=1
            feature_path = None
            
        if (self.dataset == 'MCFS-22') or (self.dataset == 'MCFS-130'):
            feature = feature[:,:,:2] # t,v,c
            feature[:,:,0] = feature[:,:,0]/1280 - 0.5
            feature[:,:,1] = feature[:,:,1]/720 - 0.5
            feature = feature - feature[:,8:9,:]
            feature = feature.transpose(2, 1, 0) #   t,v,c--->c,v,t

        elif (self.dataset == 'PKU-subject') or (self.dataset == 'PKU-view'):
            feature = feature.reshape(-1,2,25,3).transpose(3,0,2,1) #   t,m,v,c--->c,t,v,m
            disps = get_displacements(feature)
            rel_coords = get_relative_coordinates(feature)
            feature = np.concatenate([disps, rel_coords], axis=0)
            feature = feature.transpose(3,0,2,1).reshape(12, 25, -1) #   c,t,v,m--->mc,v,t
            # M, C, V, T = feature.shape[3], feature.shape[0], feature.shape[2], feature.shape[1]
            # feature = feature.transpose(3, 0, 2, 1).reshape(M * C, V, T)
        elif re.match(self.babel, self.dataset):
            disps = get_displacements(feature)
            rel_coords = get_relative_coordinates(feature)
            feature = np.concatenate([disps, rel_coords], axis=0)
            M, C, V, T = feature.shape[3], feature.shape[0], feature.shape[2], feature.shape[1]
            feature = feature.transpose(3, 0, 2, 1).reshape(M * C, V, T)

        elif  (self.dataset == 'LARA'):
            disps = get_displacements(feature)
            rel_coords = get_relative_coordinates(feature)
            feature = np.concatenate([disps, rel_coords], axis=0)
            feature = feature.transpose(3,0,2,1).reshape(12, 19, -1) #   c,t,v,m--->mc,v,t

            
        if self.transform is not None:
            feature, label, boundary = self.transform([feature, label, boundary])

        sample = {
            "feature": feature,
            "label": label,
            "feature_path": feature_path,
            "boundary": boundary,
        }

        return sample


def collate_fn(sample: List[Dict[str, Any]]) -> Dict[str, Any]:
    max_length = max([s["feature"].shape[2] for s in sample])

    feat_list = []
    label_list = []
    path_list = []
    boundary_list = []
    length_list = []

    for s in sample:
        feature = s["feature"]
        label = s["label"]
        boundary = s["boundary"]
        feature_path = s["feature_path"]

        _, _, t = feature.shape
        pad_t = max_length - t
        length_list.append(t)

        if pad_t > 0:
            feature = F.pad(
                feature, (0, pad_t), mode='constant', value=0.)
            label = F.pad(label, (0, pad_t), mode='constant', value=255)
            boundary = F.pad(boundary, (0, pad_t), mode='constant', value=0.)

        # reshape boundary (T) => (1, T)
        boundary = boundary.unsqueeze(0)

        feat_list.append(feature)
        label_list.append(label)
        path_list.append(feature_path)
        boundary_list.append(boundary)

    # merge features from tuple of 2D tensor to 3D tensor
    features = torch.stack(feat_list, dim=0) #(N,C,V,T)
    # merge labels from tuple of 1D tensor to 2D tensor
    labels = torch.stack(label_list, dim=0) #(N,T)

    # merge labels from tuple of 2D tensor to 3D tensor
    # shape (N, 1, T)
    boundaries = torch.stack(boundary_list, dim=0) # (N, 1, T)

    # generate masks which shows valid length for each video (N, 1, T)
    masks = [
        [[1 if i < length else 0 for i in range(max_length)]] for length in length_list
    ]
    masks = torch.tensor(masks, dtype=torch.bool)

    return {
        "feature": features,
        "label": labels,
        "boundary": boundaries,
        "feature_path": path_list,
        "mask": masks,
    }