File size: 6,274 Bytes
b75fb56 2bdc356 df1fc48 2bdc356 df1fc48 2bdc356 df1fc48 2bdc356 df1fc48 2bdc356 df1fc48 b75fb56 d05ab45 b75fb56 df1fc48 b75fb56 1cf6d71 b75fb56 1cf6d71 b75fb56 df1fc48 b75fb56 df1fc48 b75fb56 1cf6d71 b75fb56 1cf6d71 df1fc48 1cf6d71 df1fc48 1cf6d71 df1fc48 1cf6d71 b75fb56 2bdc356 df1fc48 2bdc356 df1fc48 2bdc356 df1fc48 2bdc356 b75fb56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
license: mit
language:
- en
pipeline_tag: text-classification
tags:
- text-classification
---
<div align="center">
<h1>
Facilitating Pornographic Text Detection for Open-Domain Dialogue
Systems via Knowledge Distillation of Large Language Models
</h1>
</div>
<p align="center">
📄 <a href="https://arxiv.org/pdf/2403.13250.pdf" target="_blank">Paper</a> •
🤗 <a href="https://huggingface.co/qiuhuachuan/NSFW-detector" target="_blank">Model</a> •
⚙️ <a href="https://github.com/qiuhuachuan/CensorChat" target="_blank">GitHub</a>
</p>
## Overview
_CensorChat_ is a dialogue monitoring dataset aimed at pornographic text detection within a human-machine dialogue.
<p align="center"> <img src="assets/method.png" style="width: 70%;" id="title-icon"></p>
## Usage
**NOTICE:** You can directly use our trained checkpoint on the hub of Hugging Face.
For context-level detection, the input format should be `[user] {user utterance} [SEP] [chatbot] {chatbot response}`, where user utterance and chatbot response should be placed corresponding content.
1. Download the checkpoint
```Bash
git lfs install
git clone https://huggingface.co/qiuhuachuan/NSFW-detector
```
2. Modify the `text` parameter in local_use.py and execute it.
```Python
from typing import Optional
import torch
from transformers import BertConfig, BertTokenizer, BertModel, BertPreTrainedModel
from torch import nn
label_mapping = {0: 'porn', 1: 'normal'}
config = BertConfig.from_pretrained('./NSFW-detector',
num_labels=2,
finetuning_task='text classification')
tokenizer = BertTokenizer.from_pretrained('./NSFW-detector',
use_fast=False,
never_split=['[user]', '[chatbot]'])
tokenizer.vocab['[user]'] = tokenizer.vocab.pop('[unused1]')
tokenizer.vocab['[chatbot]'] = tokenizer.vocab.pop('[unused2]')
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel.from_pretrained('./NSFW-detector')
classifier_dropout = (config.classifier_dropout
if config.classifier_dropout is not None else
config.hidden_dropout_prob)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# we use cls embedding
cls = outputs[0][:, 0, :]
cls = self.dropout(cls)
logits = self.classifier(cls)
return logits
model = BertForSequenceClassification(config=config)
model.load_state_dict(torch.load('./NSFW-detector/pytorch_model.bin'))
model.cuda()
model.eval()
# The following object contains two types of input:
# a single utterance and a single-turn dialogue
to_predict_items = [{
'text':
'''Give some movie recommendations to get women in the mood for sex'''
}, {
'text': 'I break through walls to find more trials'
}, {
'history': {
'user':
'Give some movie recommendations to get women in the mood for sex',
'chatbot':
'''I apologize, but I cannot assist in creating or providing information related to NSFW content or any tools for such purposes. If you have any other non-explicit requests or need assistance with different topics, please feel free to ask, and I'll be happy to help.'''
}
}, {
'history': {
'user':
'Give some movie recommendations to get women in the mood for sex',
'chatbot': '''Sure.'''
}
}]
for item in to_predict_items:
if 'history' in item:
text = '[user] ' + item['history'][
'user'] + ' [SEP] ' + '[chatbot] ' + item['history']['chatbot']
else:
text = item['text']
result = tokenizer.encode_plus(text=text,
padding='max_length',
max_length=512,
truncation=True,
add_special_tokens=True,
return_token_type_ids=True,
return_tensors='pt')
result = result.to('cuda')
with torch.no_grad():
logits = model(**result)
predictions = logits.argmax(dim=-1)
pred_label_idx = predictions.item()
pred_label = label_mapping[pred_label_idx]
print('text:', text)
print('predicted label is:', pred_label)
```
## Citation
If our work is useful for your own, you can cite us with the following BibTex entry:
```bibtex
@misc{qiu2024facilitating,
title={Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models},
author={Huachuan Qiu and Shuai Zhang and Hongliang He and Anqi Li and Zhenzhong Lan},
year={2024},
eprint={2403.13250},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |