File size: 6,274 Bytes
b75fb56
 
 
 
 
 
 
 
2bdc356
 
df1fc48
 
2bdc356
 
 
 
df1fc48
 
 
2bdc356
 
 
 
df1fc48
2bdc356
df1fc48
2bdc356
 
 
 
 
df1fc48
b75fb56
 
 
 
 
 
 
 
 
 
d05ab45
b75fb56
 
 
 
 
 
df1fc48
b75fb56
1cf6d71
b75fb56
 
1cf6d71
b75fb56
df1fc48
b75fb56
df1fc48
b75fb56
 
 
 
 
 
 
 
1cf6d71
b75fb56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf6d71
 
 
 
 
 
 
 
 
 
 
df1fc48
1cf6d71
 
 
 
 
 
df1fc48
1cf6d71
 
 
 
 
 
df1fc48
1cf6d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75fb56
 
2bdc356
 
 
 
 
df1fc48
 
2bdc356
df1fc48
 
2bdc356
df1fc48
2bdc356
b75fb56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
license: mit
language:
- en
pipeline_tag: text-classification
tags:
- text-classification
---
<div align="center">
<h1>
  Facilitating Pornographic Text Detection for Open-Domain Dialogue
  Systems via Knowledge Distillation of Large Language Models
</h1>
</div>

<p align="center">
📄 <a href="https://arxiv.org/pdf/2403.13250.pdf" target="_blank">Paper</a> • 
🤗 <a href="https://huggingface.co/qiuhuachuan/NSFW-detector" target="_blank">Model</a> •
⚙️ <a href="https://github.com/qiuhuachuan/CensorChat" target="_blank">GitHub</a>
</p>

## Overview

_CensorChat_ is a dialogue monitoring dataset aimed at pornographic text detection within a human-machine dialogue.

<p align="center"> <img src="assets/method.png" style="width: 70%;" id="title-icon"></p>

## Usage

**NOTICE:** You can directly use our trained checkpoint on the hub of Hugging Face.

For context-level detection, the input format should be `[user] {user utterance} [SEP] [chatbot] {chatbot response}`, where user utterance and chatbot response should be placed corresponding content.

1. Download the checkpoint

```Bash
git lfs install
git clone https://huggingface.co/qiuhuachuan/NSFW-detector
```

2. Modify the `text` parameter in local_use.py and execute it.

```Python
from typing import Optional

import torch
from transformers import BertConfig, BertTokenizer, BertModel, BertPreTrainedModel
from torch import nn

label_mapping = {0: 'porn', 1: 'normal'}

config = BertConfig.from_pretrained('./NSFW-detector',
                                    num_labels=2,
                                    finetuning_task='text classification')
tokenizer = BertTokenizer.from_pretrained('./NSFW-detector',
                                          use_fast=False,
                                          never_split=['[user]', '[chatbot]'])
tokenizer.vocab['[user]'] = tokenizer.vocab.pop('[unused1]')
tokenizer.vocab['[chatbot]'] = tokenizer.vocab.pop('[unused2]')


class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel.from_pretrained('./NSFW-detector')
        classifier_dropout = (config.classifier_dropout
                              if config.classifier_dropout is not None else
                              config.hidden_dropout_prob)
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                token_type_ids: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.Tensor] = None,
                head_mask: Optional[torch.Tensor] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                labels: Optional[torch.Tensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None):

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # we use cls embedding
        cls = outputs[0][:, 0, :]
        cls = self.dropout(cls)
        logits = self.classifier(cls)

        return logits


model = BertForSequenceClassification(config=config)
model.load_state_dict(torch.load('./NSFW-detector/pytorch_model.bin'))
model.cuda()
model.eval()

# The following object contains two types of input:
# a single utterance and a single-turn dialogue
to_predict_items = [{
    'text':
    '''Give some movie recommendations to get women in the mood for sex'''
}, {
    'text': 'I break through walls to find more trials'
}, {
    'history': {
        'user':
        'Give some movie recommendations to get women in the mood for sex',
        'chatbot':
        '''I apologize, but I cannot assist in creating or providing information related to NSFW content or any tools for such purposes. If you have any other non-explicit requests or need assistance with different topics, please feel free to ask, and I'll be happy to help.'''
    }
}, {
    'history': {
        'user':
        'Give some movie recommendations to get women in the mood for sex',
        'chatbot': '''Sure.'''
    }
}]

for item in to_predict_items:
    if 'history' in item:
        text = '[user] ' + item['history'][
            'user'] + ' [SEP] ' + '[chatbot] ' + item['history']['chatbot']
    else:
        text = item['text']
    result = tokenizer.encode_plus(text=text,
                                   padding='max_length',
                                   max_length=512,
                                   truncation=True,
                                   add_special_tokens=True,
                                   return_token_type_ids=True,
                                   return_tensors='pt')
    result = result.to('cuda')

    with torch.no_grad():
        logits = model(**result)
        predictions = logits.argmax(dim=-1)
        pred_label_idx = predictions.item()
        pred_label = label_mapping[pred_label_idx]
        print('text:', text)
        print('predicted label is:', pred_label)
```

## Citation

If our work is useful for your own, you can cite us with the following BibTex entry:

```bibtex
@misc{qiu2024facilitating,
      title={Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models},
      author={Huachuan Qiu and Shuai Zhang and Hongliang He and Anqi Li and Zhenzhong Lan},
      year={2024},
      eprint={2403.13250},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```