File size: 9,573 Bytes
e4e7193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn as nn
import math

# from transformers import CLIPConfig,AutoConfig
from typing import Any, Optional, Tuple, Union
import torch.distributed.nn as nn_dist
import torch.nn.functional as F
import numpy as np
from collections import OrderedDict
from typing import Tuple, Union
from .modeling_clip import CLIPModel, CLIPTextTransformer, CLIPVisionTransformer, CLIPOutput, CLIPAttention, CLIPMLP

import torch.distributed as dist
from torch.nn import AvgPool2d
from transformers import (
    AutoImageProcessor,
    AutoModel,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
)

from .modeling_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from torch import nn, einsum
from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange, Reduce
import math
from torchvision.ops import roi_align


class FGCLIPConfig(CLIPConfig):
    model_type = "clip"

class FGCLIPModel(CLIPModel):
    config_class = FGCLIPConfig
    main_input_name = "text_long"

    def __init__(self, config):
        super(CLIPModel, self).__init__(config)

        if not isinstance(config.text_config, CLIPTextConfig):
            raise ValueError(
                "config.text_config is expected to be of type CLIPTextConfig but is of type"
                f" {type(config.text_config)}."
            )

        if not isinstance(config.vision_config, CLIPVisionConfig):
            raise ValueError(
                "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
                f" {type(config.vision_config)}."
            )

        text_config = config.text_config
        vision_config = config.vision_config
        text_config.eos_token_id = 49407
        text_config.pad_token_id = 49407
        text_config.bos_token_id = 49406

        self.projection_dim = config.projection_dim
        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        self.text_model = CLIPTextTransformer(text_config)

        self.vision_model = CLIPVisionTransformer(vision_config)
        self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)


        self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
        self.text_filip_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)


        self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
        self.logit_scale_finegraind = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
        self.logit_scale_hardneg = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))

 
        self.embed_dim = text_config.hidden_size
        self.world_size = 0

        # Initialize weights and apply final processing
        self.post_init()


    def get_image_features(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:

        # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = vision_outputs[1]  # pooled_output
        image_features = self.visual_projection(pooled_output)

        return image_features
    
    def get_image_box_roi_features(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        box_info=None,
    ) -> torch.FloatTensor:


        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=return_dict
        )

        bs = pixel_values.shape[0]
        length = vision_outputs[0].shape[1]-1
        h = int(math.sqrt(length))
        w = h

        feature_map = vision_outputs.hidden_states[-2]#[:, 1:, :]
        feature_map = self.forward_without_attn(feature_map)[:, 1:]

        feature_map = self.vision_model.post_layernorm(feature_map)
        feature_map = self.visual_projection(feature_map)

        feature_map = feature_map.view(bs, h, w, -1).permute(0, 3, 1, 2)
        x_rois = roi_align(feature_map.type(torch.float32),box_info, (1, 1), 1.0, -1, True)[..., 0, 0]

        x_rois = x_rois / x_rois.norm(p=2, dim=-1, keepdim=True)

        return x_rois

    def get_text_features(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        walk_short_pos: Optional[bool] = True,
        use_bbox: Optional[bool] = False
    ) -> torch.FloatTensor:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        pos_flag = walk_short_pos or use_bbox

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            walk_short_pos=pos_flag,
        )
        pooled_output = text_outputs[1]

        if walk_short_pos:
            text_features = self.text_projection(pooled_output)
        else:
            text_features = self.text_filip_projection(pooled_output)           

        return text_features

    @staticmethod
    def _denormalize_boxes(normed_boxes, x):
        h, w = x.shape[-2:]
        denormed_boxes = []
        for boxes in normed_boxes:

            new_boxes = boxes.clone()   # FIXME: do not change the value in normed_boxes!
            new_boxes[:, [0, 2]] *= w
            new_boxes[:, [1, 3]] *= h
            denormed_boxes.append(new_boxes.type(torch.float32))
        return denormed_boxes

    def forward_without_attn(self, x):
        # get last layer 
        residual = x
        x = self.vision_model.encoder.layers[-1].layer_norm1(x)

        x = F.linear(input=x, weight=self.vision_model.encoder.layers[-1].self_attn.v_proj.weight, bias=self.vision_model.encoder.layers[-1].self_attn.v_proj.bias)
        x = self.vision_model.encoder.layers[-1].self_attn.out_proj(x)
        x = residual+x

        residual = x
        x = self.vision_model.encoder.layers[-1].layer_norm2(x)
        x = self.vision_model.encoder.layers[-1].mlp(x)
        x = residual + x

        return x


    def get_image_dense_features(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        interpolate_pos_encoding=False,
        box_info=None,
    ) -> torch.FloatTensor:

        # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=return_dict,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )


        bs = pixel_values.shape[0]
        length = vision_outputs[0].shape[1]-1
        h = int(math.sqrt(length))
        w = h

        feature_map = vision_outputs.hidden_states[-2]#[:, 1:, :]
        feature_map = self.forward_without_attn(feature_map)[:, 1:]

        feature_map = self.vision_model.post_layernorm(feature_map)
        feature_map = self.visual_projection(feature_map)

        return feature_map