zhaicunqi commited on
Commit
f7047cc
1 Parent(s): 815be35

Delete README_EN.md

Browse files
Files changed (1) hide show
  1. README_EN.md +0 -547
README_EN.md DELETED
@@ -1,547 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - zh
5
- - en
6
- library_name: transformers
7
- tags:
8
- - qihoo360
9
- - 奇虎360
10
- - zhinao
11
- - 360Zhinao
12
- - pretrain
13
- ---
14
-
15
- <div align="center">
16
- <h1>
17
- 360Zhinao (360智脑)
18
- </h1>
19
- </div>
20
- <div align="center">
21
- 🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
22
- 🔥 <a href="https://github.com/Qihoo360/360zhinao/">GitHub</a>&nbsp&nbsp | &nbsp&nbsp
23
- 💬 <a href="https://github.com/Qihoo360/360zhinao/tree/main/assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
24
- </div>
25
- <br>
26
- <p align="center">
27
- Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
28
- </p>
29
-
30
- <br>
31
-
32
- # Models Introduction
33
- 🎉🎉🎉We open-source the 360Zhinao model series:
34
- - **360Zhinao-7B-Base**
35
- - **360Zhinao-7B-Chat-4K**
36
- - **360Zhinao-7B-Chat-32K**
37
- - **360Zhinao-7B-Chat-360K**
38
-
39
-
40
- The characteristics of the 360Zhinao open-source models are:
41
- - **Base Model:** Leveraging a high-quality corpus of 3.4 trillion Tokens which mainly consist of Chinese, English and code, we achieved competitive performance on relevant benchmark evaluations of the same model scale.
42
- - **Chat Model:** Powerful chat capabilities and three different sequence lengths of 4K, 32K and 360K. 360K (about 500k Chinese characters) is the longest sequcence length among open-sourced Chinese models until now.
43
-
44
- <br>
45
-
46
- # News and Updates
47
- - 2024.04.11 We release **360Zhinao-7B** 1.0 version, include the base model and three chat model with sequence lengths of 4K, 32K adn 360K.
48
-
49
- <br>
50
-
51
- # Table of contents
52
- - [Download URL](#Download-URL)
53
- - [Model Evaluation](#Model-Evaluation)
54
- - [Quickstart](#Quickstart)
55
- - [Model Inference](#Model-Inference)
56
- - [Model Finetune](#Model-Finetune)
57
- - [License](#License)
58
-
59
- <br>
60
-
61
- # Download URL
62
- See the following table for this release and download links:
63
- | Size | Model | BF16 | Int4|
64
- |-|-|-|-|
65
- | 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
66
- | 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
67
- | 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
68
- | 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
69
-
70
- <br>
71
-
72
- # Model Evaluation
73
- ## Base Model
74
- We evaluate the performance of our model on the OpenCompass evaluation datasets, including C-Eval, AGIEval, MMLU, CMMLU, HellaSwag, MATH, GSM8K, HumanEval, MBPP, BBH, LAMBADA. The ablity evaluated of model include natural language understanding, knowledge, mathematical computation and reasoning, code generation, logical reasoning, etc.
75
-
76
- | <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
77
- |:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
78
- | Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
79
- | Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
80
- | ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
81
- | DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
82
- | InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
83
- | InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
84
- | LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
85
- | LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
86
- | Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
87
- | MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
88
- | Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
89
- | Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
90
- | XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
91
- | Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
92
- | **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
93
-
94
- The above results could be viewed or reproduced on [Opencompass](https://rank.opencompass.org.cn/leaderboard-llm).
95
-
96
- ## Chat Models
97
-
98
- We adopted a two-stage approach to train the long context models.
99
-
100
- **First stage**: We increased RoPE base and extended the context length to 32K.
101
- - Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
102
- - Then during the SFT stage, we fine-tuned the model using long data from various sources, including high-quality human-labeled 32K data.
103
-
104
- **Second stage**: We extended the context length to 360K, training with the following data:
105
- - A small amount of high-quality human-labeled super-long data.
106
- - Due to the scarcity of annotated super-long data, we constructed various forms of synthetic data.
107
- - Multi-Doc QA: Similar to [Ziya-Reader](https://arxiv.org/abs/2311.09198), we generated multi-document QA pairs based on 360's database. Multiple QA pairs are constructed for one row of Multi-Doc QA data input, resulting in a multi-turn format and significantly improving the training efficiency.
108
- - Single-Doc QA: Similar to [LLama2 Long](https://arxiv.org/abs/2309.16039), we constructed multi-turn QA data based on different segments within one row of long-text input.
109
-
110
- We evaluated our models across various lengths and benchmarks.
111
-
112
- - ### Long Context Benchmarks
113
-
114
-
115
- We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on Chinese tasks that are the most relevant to downstream applications: Single/Multi-Doc QA, Summarization, Few-Shot Learning and Code Completion.
116
-
117
- | Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
118
- | :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
119
- | GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
120
- | ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
121
- | ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
122
- | InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
123
- | Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
124
- | Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
125
- | 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
126
-
127
- - ### 360Zhinao-7B-Chat-360K on "NeedleInAHaystack"
128
-
129
- [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) places one small piece of information in different positions of long text and queries this information as a test of LLM's long-context capabilities.
130
-
131
- 360Zhinao-7B-Chat-360K could achieve over 98% accuracy on both English and Chinese NeedleInAHaystack tasks.
132
-
133
- - English version(same as [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))
134
-
135
- <p align="center">
136
- <img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
137
- <p>
138
-
139
- **needle**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
140
-
141
- **query**:What is the best thing to do in San Francisco?
142
-
143
-
144
- - Chinese version
145
-
146
- <p align="center">
147
- <img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
148
- <p>
149
-
150
- We constructed the Chinese version following the [SuperCLUE-200K benchmark](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw):
151
-
152
- **haystack**:Chinese novels.
153
-
154
- **needle**:(in Chinese) 王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
155
-
156
- **query**:(in Chinese) 王莽在谁的手下工作?
157
-
158
- <br>
159
-
160
- # Quickstart
161
- Simple examples to illustrate how to use 360Zhinao-7B-Base and 360Zhinao-7B-Chat quickly using 🤖 ModelScope and 🤗 Transformers
162
-
163
- ## Dependency Installation
164
- - python 3.8 and above
165
- - pytorch 2.0 and above
166
- - transformers 4.37.2 and above
167
- - CUDA 11.4 and above are recommended.
168
-
169
- ```shell
170
- pip install -r requirements.txt
171
- ```
172
- We recommend installing Flash-Attention (which currently supports flash attention 2) to increase your performance and reduce your memory footprint. (flash-attention is optional and will work without installation)
173
-
174
- >flash-attn >= 2.3.6
175
- ```shell
176
- FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
177
- ```
178
-
179
- ## 🤗 Transformers
180
- ### Demonstration of Base Model Inference
181
-
182
- This code demonstrates fast inference with 360Zhinao-7B-Base models using transformers.
183
- ```python
184
- from transformers import AutoTokenizer, AutoModelForCausalLM
185
- from transformers.generation import GenerationConfig
186
-
187
- MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
188
-
189
- tokenizer = AutoTokenizer.from_pretrained(
190
- MODEL_NAME_OR_PATH,
191
- trust_remote_code=True)
192
-
193
- model = AutoModelForCausalLM.from_pretrained(
194
- MODEL_NAME_OR_PATH,
195
- device_map="auto",
196
- trust_remote_code=True)
197
-
198
- generation_config = GenerationConfig.from_pretrained(
199
- MODEL_NAME_OR_PATH,
200
- trust_remote_code=True)
201
-
202
- inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
203
- inputs = inputs.to(model.device)
204
-
205
- pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
206
- print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
207
- ```
208
- ### Demonstration of Chat Model Inference
209
-
210
- This code demo uses transformers to quickly use the 360Zhinao-7B-Chat-4K model for inference.
211
- ```python
212
- from transformers import AutoTokenizer, AutoModelForCausalLM
213
- from transformers.generation import GenerationConfig
214
-
215
- MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
216
-
217
- tokenizer = AutoTokenizer.from_pretrained(
218
- MODEL_NAME_OR_PATH,
219
- trust_remote_code=True)
220
-
221
- model = AutoModelForCausalLM.from_pretrained(
222
- MODEL_NAME_OR_PATH,
223
- device_map="auto",
224
- trust_remote_code=True)
225
-
226
- generation_config = GenerationConfig.from_pretrained(
227
- MODEL_NAME_OR_PATH,
228
- trust_remote_code=True)
229
-
230
- messages = []
231
- #round-1
232
- messages.append({"role": "user", "content": "介绍一下刘德华"})
233
- response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
234
- messages.append({"role": "assistant", "content": response})
235
- print(messages)
236
-
237
- #round-2
238
- messages.append({"role": "user", "content": "他有什么代表作?"})
239
- response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
240
- messages.append({"role": "assistant", "content": response})
241
- print(messages)
242
- ```
243
-
244
- ## 🤖 ModelScope
245
- ### Demonstration of Base Model Inference
246
-
247
- This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Base model for inference.
248
-
249
- ```python
250
- from modelscope import AutoModelForCausalLM, AutoTokenizer
251
- from modelscope import GenerationConfig
252
-
253
- MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
254
-
255
- tokenizer = AutoTokenizer.from_pretrained(
256
- MODEL_NAME_OR_PATH,
257
- trust_remote_code=True)
258
-
259
- model = AutoModelForCausalLM.from_pretrained(
260
- MODEL_NAME_OR_PATH,
261
- device_map="auto",
262
- trust_remote_code=True)
263
-
264
- generation_config = GenerationConfig.from_pretrained(
265
- MODEL_NAME_OR_PATH,
266
- trust_remote_code=True)
267
-
268
- inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
269
- inputs = inputs.to(model.device)
270
-
271
- pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
272
- print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
273
- ```
274
-
275
- ### Demonstration of Chat Model Inference
276
-
277
- This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.
278
-
279
- ```python
280
- from modelscope import AutoModelForCausalLM, AutoTokenizer
281
- from modelscope import GenerationConfig
282
-
283
- MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
284
-
285
- tokenizer = AutoTokenizer.from_pretrained(
286
- MODEL_NAME_OR_PATH,
287
- trust_remote_code=True)
288
-
289
- model = AutoModelForCausalLM.from_pretrained(
290
- MODEL_NAME_OR_PATH,
291
- device_map="auto",
292
- trust_remote_code=True)
293
-
294
- generation_config = GenerationConfig.from_pretrained(
295
- MODEL_NAME_OR_PATH,
296
- trust_remote_code=True)
297
-
298
- messages = []
299
- #round-1
300
- messages.append({"role": "user", "content": "介绍一下刘德华"})
301
- response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
302
- messages.append({"role": "assistant", "content": response})
303
- print(messages)
304
-
305
- #round-2
306
- messages.append({"role": "user", "content": "他有什么代表作?"})
307
- response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
308
- messages.append({"role": "assistant", "content": response})
309
- print(messages)
310
- ```
311
-
312
- ## CLI Demo
313
- Use terminal interaction for a fast experience
314
- ```shell
315
- python cli_demo.py
316
- ```
317
- <p align="center">
318
- <img src="assets/cli_demo.gif" width="600" />
319
- <p>
320
-
321
- ## Web Demo
322
- You can also use web interaction for a quick experience
323
- ```shell
324
- streamlit run web_demo.py
325
- ```
326
- <p align="center">
327
- <img src="assets/web_demo.gif" width="600" />
328
- <p>
329
-
330
- ## API Demo
331
- Start command
332
- ```shell
333
- python openai_api.py
334
- ```
335
-
336
- Request parameter
337
- ```shell
338
- curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
339
- --header 'Content-Type: application/json' \
340
- --data-raw '{
341
- "max_new_tokens": 200,
342
- "do_sample": true,
343
- "top_k": 0,
344
- "top_p": 0.8,
345
- "temperature": 1.0,
346
- "repetition_penalty": 1.0,
347
- "messages": [
348
- {
349
- "role": "user",
350
- "content": "你叫什么名字?"
351
- }
352
- ]
353
- }'
354
- ```
355
-
356
- <br>
357
-
358
- # Model Inference
359
- ## Quantization
360
- We provide quantization schemes based on AutoGPTQ and open source the Int4 quantization models.
361
-
362
- ## Deployment
363
- ### vLLM Installation
364
- If you want to deploy and accelerate inference, we recommend using `vLLM==0.3.3`。
365
-
366
- If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with the following command.
367
- ```shell
368
- pip install vllm==0.3.3
369
- ```
370
-
371
- Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
372
-
373
- >Once the installation is complete, you will need to do the following
374
- 1. Copy the vllm/zhinao.py file to the vllm/model_executor/models directory corresponding to your env environment.
375
- 2. Copy the vllm/serving_chat.py file to the vllm/entrypoints/openai corresponding to your env environment.
376
- 3. Then add a line to vllm/model_executor/models/\_\_init\_\_.py
377
-
378
- ```shell
379
- "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
380
- ```
381
-
382
- ### vLLM Service Start
383
-
384
- Starting the service
385
- ```shell
386
- python -m vllm.entrypoints.openai.api_server \
387
- --served-model-name 360Zhinao-7B-Chat-4K \
388
- --model qihoo360/360Zhinao-7B-Chat-4K \
389
- --trust-remote-code \
390
- --tensor-parallel-size 1 \
391
- --max-model-len 4096 \
392
- --host 0.0.0.0 \
393
- --port 8360
394
- ```
395
-
396
- Use curl to request the service
397
- ```shell
398
- curl http://localhost:8360/v1/chat/completions \
399
- -H "Content-Type: application/json" \
400
- -d '{
401
- "model": "360Zhinao-7B-Chat-4K",
402
- "max_tokens": 200,
403
- "top_k": -1,
404
- "top_p": 0.8,
405
- "temperature": 1.0,
406
- "presence_penalty": 0.0,
407
- "frequency_penalty": 0.0,
408
- "messages": [
409
- {"role": "system", "content": "You are a helpful assistant."},
410
- {"role": "user", "content": "你好"}
411
- ],
412
- "stop": [
413
- "<eod>",
414
- "<|im_end|>",
415
- "<|im_start|>"
416
- ]
417
- }'
418
- ```
419
- Use python to request the service
420
- ```python
421
- from openai import OpenAI
422
- openai_api_key = "EMPTY"
423
- openai_api_base = "http://localhost:8360/v1"
424
-
425
- client = OpenAI(
426
- api_key=openai_api_key,
427
- base_url=openai_api_base,
428
- )
429
-
430
- chat_response = client.chat.completions.create(
431
- model="360Zhinao-7B-Chat-4K",
432
- messages=[
433
- {"role": "system", "content": "You are a helpful assistant."},
434
- {"role": "user", "content": "你好"},
435
- ],
436
- stop=[
437
- "<eod>",
438
- "<|im_end|>",
439
- "<|im_start|>"
440
- ],
441
- presence_penalty=0.0,
442
- frequency_penalty=0.0
443
- )
444
- print("Chat response:", chat_response)
445
- ```
446
-
447
- > Notice: If you need to enable repetition penalty, recommended to use *presence_penalty* and *frequency_penalty* parameters.
448
-
449
- >
450
-
451
- <br>
452
-
453
- # Model Finetune
454
- ## Training data
455
-
456
- Training Data: data/training_data_sample.json. The sample data is 10,000 pieces sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) and format converted.
457
-
458
- Data Format:
459
- ```json
460
- [
461
- {
462
- "id": 1,
463
- "conversations": [
464
- {
465
- "from": "system",
466
- "value": "You are a helpful assistant."
467
- },
468
- {
469
- "from": "user",
470
- "value": "您好啊"
471
- },
472
- {
473
- "from": "assistant",
474
- "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
475
- }
476
- ]
477
- }
478
- ]
479
- ```
480
- ## Fine-tuning scripts
481
- ```shell
482
- set -x
483
-
484
- HOSTFILE=hostfile
485
- DS_CONFIG=./finetune/ds_config_zero2.json
486
-
487
- # PARAMS
488
- LR=5e-6
489
- EPOCHS=3
490
- MAX_LEN=4096
491
- BATCH_SIZE=4
492
- NUM_NODES=1
493
- NUM_GPUS=8
494
- MASTER_PORT=29500
495
-
496
- IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)
497
-
498
- DATA_PATH="./data/training_data_sample.json"
499
- MODEL_PATH="qihoo360/360Zhinao-7B-Base"
500
- OUTPUT_DIR="./outputs/"
501
-
502
- deepspeed --hostfile ${HOSTFILE} \
503
- --master_port ${MASTER_PORT} \
504
- --num_nodes ${NUM_NODES} \
505
- --num_gpus ${NUM_GPUS} \
506
- finetune.py \
507
- --report_to "tensorboard" \
508
- --data_path ${DATA_PATH} \
509
- --model_name_or_path ${MODEL_PATH} \
510
- --output_dir ${OUTPUT_DIR} \
511
- --model_max_length ${MAX_LEN} \
512
- --num_train_epochs ${EPOCHS} \
513
- --per_device_train_batch_size ${BATCH_SIZE} \
514
- --gradient_accumulation_steps 1 \
515
- --save_strategy steps \
516
- --save_steps 200 \
517
- --learning_rate ${LR} \
518
- --lr_scheduler_type cosine \
519
- --adam_beta1 0.9 \
520
- --adam_beta2 0.95 \
521
- --adam_epsilon 1e-8 \
522
- --max_grad_norm 1.0 \
523
- --weight_decay 0.1 \
524
- --warmup_ratio 0.01 \
525
- --gradient_checkpointing True \
526
- --bf16 True \
527
- --tf32 True \
528
- --deepspeed ${DS_CONFIG} \
529
- --is_concat ${IS_CONCAT} \
530
- --logging_steps 1 \
531
- --log_on_each_node False
532
- ```
533
- ```shell
534
- bash finetune/ds_finetune.sh
535
- ```
536
- - By configuring the **hostfile**, single-machine and multi-machine training can be realized.
537
- - By configuring **ds_config**, realize zero2 and zero3 training
538
- - By configuring the **fp16**、**bf16** realize mixed precision training, bf16 is recommended to be consistent with the pre-trained model.
539
- - By configuring **is_concat**, Whether the training data is concatenated or not is controlled. When the magnitude of the training data is large, the training efficiency can be improved by concatenation.
540
-
541
- <br>
542
-
543
- # License
544
-
545
- The source code of this warehouse follows the open source license Apache 2.0.
546
-
547
- The 360 ​Zhinao open source model supports commercial use. If you need to use this model and its derivative models for commercial purposes, please contact us via email (g-zhinao-opensource@360.cn) to apply. For the specific license agreement, please see [《360 Zhinao Open Source Model License》](./360智脑开源模型许可证.txt).