File size: 31,784 Bytes
16f1801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from PIL import Image
from abc import ABC, abstractmethod
import os
import math
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
from functools import partial
from transformers.configuration_utils import PretrainedConfig
from timm.models.layers import LayerNorm, LayerNorm2d
from timm.models.regnet import RegStage
from torch.nn import functional as F
import math
from einops import rearrange
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
if not delay_load:
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self):
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
is_absolute_path_exists = os.path.exists(vision_tower)
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
raise ValueError(f'Unknown vision tower: {vision_tower}')
class HoneybeeVisualProjectorConfig(PretrainedConfig):
model_type = "mllm_visual_projector"
def __init__(
self,
projector_type: str = "resampler",
hidden_size: int = 1024, #
num_hidden_layers: int = 6, #
num_attention_heads: int = 16, #
intermediate_size: int = 4096, #
attention_probs_dropout_prob: float = 0.1, #
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-6, #
encoder_hidden_size: int = 1024, # This will be overwritten by vision_model's hidden_size
pos_emb=False,
feature_layer_index=-1, # vision feature layer index; -1: last layer
num_eos_tokens=1,
use_cls=True,
prenorm=False,
**kwargs,
):
super().__init__(**kwargs)
self.projector_type = projector_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_hidden_size = encoder_hidden_size
self.pos_emb = pos_emb
self.feature_layer_index = feature_layer_index
self.num_eos_tokens = num_eos_tokens
self.use_cls = use_cls
self.prenorm = prenorm
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the visual_projector config dict if we are loading from HoneybeeConfig
if config_dict.get("model_type") == "mllm":
config_dict = config_dict["visual_projector_config"]
if (
"model_type" in config_dict
and hasattr(cls, "model_type")
and config_dict["model_type"] != cls.model_type
):
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
def build_pos_embeds(
config: HoneybeeVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
):
# pos emb
# true
if config.pos_emb:
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
else:
pos_emb = None
return pos_emb
def build_eos_tokens(config: HoneybeeVisualProjectorConfig, output_hidden_size: int):
# think tokens
num_eos_tokens = config.num_eos_tokens
# 0
if num_eos_tokens:
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
else:
eos_tokens = None
return eos_tokens
def build_prenorm(config: HoneybeeVisualProjectorConfig):
# false
if config.prenorm:
prenorm = LayerNorm(config.encoder_hidden_size)
else:
prenorm = None
return prenorm
def build_mlp(depth, hidden_size, output_hidden_size):
layers = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
layers.append(nn.SiLU())
layers.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*layers)
def get_abs_pos(abs_pos, tgt_size):
# abs_pos: L, C
# tgt_size: M
# return: M, C
# 16,24
src_size = int(math.sqrt(abs_pos.size(1)))
# 32,48
tgt_size = int(math.sqrt(tgt_size))
dtype = abs_pos.dtype
if src_size != tgt_size:
return F.interpolate(
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
size=(tgt_size, tgt_size),
mode="bicubic",
align_corners=False,
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
else:
return abs_pos
class Projector(nn.Module):
"""Base projector class"""
def __init__(
self,
config: HoneybeeVisualProjectorConfig,
num_input_tokens: int,
output_hidden_size: int,
):
super().__init__()
self.config = config
self.num_input_tokens = num_input_tokens
self.output_hidden_size = output_hidden_size
# think tokens
self.eos_tokens = build_eos_tokens(config, output_hidden_size)
# pos emb
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
self.prenorm = build_prenorm(config)
self.build_net()
def build_net(self):
raise NotImplementedError()
def _forward(self, x):
raise NotImplementedError()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: (B, L, encoder_hidden_size) tensor from the visual backbone (CLIP visual encoder), including cls token.
"""
if self.prenorm is not None:
x = self.prenorm(x)
if self.pos_emb is not None:
# self.pos_emb = self.pos_emb[:,1:]
pos_emb = get_abs_pos(self.pos_emb[:,1:], x.size(1))
pos_emb = pos_emb.to(device=x.device)
x += pos_emb
x = self._forward(x) # (B, L, output_hidden_size)
B = x.size(0)
if self.eos_tokens is not None:
x = torch.cat([x, self.eos_tokens.expand(B, -1, -1)], dim=1)
return x
class ConvProjector(Projector):
def _forward(self, x):
# x: [B, L, dim]
# x = x[:, 1:] # drop cls token and 2d forward
hw = int(x.size(1) ** 0.5)
x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)
x = self.net(x)
x = rearrange(x, "b d h w -> b (h w) d")
x = self.readout(x)
return x
class CAbstractor(ConvProjector):
"""C-Abstractor"""
def build_net(self):
encoder_hidden_size = self.config.encoder_hidden_size
hidden_size = self.config.hidden_size
output_hidden_size = self.output_hidden_size
depth = self.config.depth
mlp_depth = self.config.mlp_depth
n_queries = self.config.num_queries
assert (n_queries ** 0.5).is_integer(), "n_queries must be square number"
hw = int(n_queries ** 0.5)
# RegBlock = ResBlock + SE
RegBlock = partial(
RegStage,
stride=1,
dilation=1,
act_layer=nn.SiLU,
norm_layer=LayerNorm2d,
)
s1 = RegBlock(
depth,
encoder_hidden_size,
hidden_size,
)
sampler = nn.AdaptiveAvgPool2d((hw, hw))
s2 = RegBlock(
depth,
hidden_size,
hidden_size,
)
self.net = nn.Sequential(s1, sampler, s2)
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
class SimpleResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.pre_norm = nn.LayerNorm(channels)
self.proj = nn.Sequential(
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
def build_honeybee_projector(config, projector_type, num_tokens,lm_hidden_size):
"""Build projector (abstractor) and query_tokens (optionally for resampler)"""
proj_config = config
proj_type = projector_type
num_tokens = num_tokens
output_hidden_size = lm_hidden_size # LM hidden size
abstractor = {
"c-abs": CAbstractor,
}[
proj_type
](proj_config, num_tokens, output_hidden_size)
return abstractor
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
if projector_type == 'c-abs':
local_config_path = config.mm_projector_config
honeybee_config = HoneybeeVisualProjectorConfig.from_pretrained(local_config_path)
num_tokens = config.mm_num_tokens
lm_hidden_size = config.hidden_size
abstractor = build_honeybee_projector(honeybee_config,projector_type,num_tokens,lm_hidden_size)
return abstractor
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
class QH360_VL_MetaModel:
def __init__(self, config):
super(QH360_VL_MetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector_ctt = build_vision_projector(config)
self.mm_projector_ori = build_vision_projector(config)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
class QH360_VL_MetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_images_noprojector(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = image_features.detach()
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
return input_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
image_features = []
for image in images:
if image.ndim == 3:
image_features.append(self.encode_images(image.unsqueeze(0)).squeeze(0))
elif image.ndim == 4:
#NOTE cc-plan
temp_feats = self.encode_images_noprojector(image)
src_size = int(math.sqrt(temp_feats.shape[1]))
temp_feats = temp_feats.reshape(temp_feats.shape[0]//5,5,-1, temp_feats.shape[-1])
x1 = temp_feats[:,4,:,:]
x = temp_feats[:,:4,:,:]
x = x.reshape(x.shape[0], -1, src_size, src_size, x.shape[-1])
x = x.transpose(1,2).reshape(x.shape[0], src_size,2,2, src_size, x.shape[-1])
x = x.transpose(1,2).reshape(x.shape[0], -1, x.shape[-1])
x1 = self.get_model().mm_projector_ori(x1).squeeze(0)
x = self.get_model().mm_projector_ctt(x).squeeze(0)
temp_feats_all = torch.cat([x,x1],dim=0)
image_features.append(temp_feats_all)
else:
image_features = self.encode_images(images)
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
# FIXME: this is a hacky fix, for deepspeed zero3 to work
half_len = cur_input_ids.shape[0] // 2
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
while image_token_indices.numel() > 0:
cur_image_features = image_features[cur_image_idx]
image_token_start = image_token_indices[0]
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
cur_labels = cur_labels[image_token_start+2:]
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[image_token_start+1:]
cur_image_idx += 1
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_input_ids = cur_input_ids[image_token_start+2:]
else:
cur_input_ids = cur_input_ids[image_token_start+1:]
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
if cur_input_ids.numel() > 0:
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
return None, attention_mask, past_key_values, new_input_embeds, new_labels
class QH360_VLConfig(LlamaConfig):
model_type = "QH_360VL"
class QH360_VL_LlamaModel(QH360_VL_MetaModel, LlamaModel):
config_class = QH360_VLConfig
def __init__(self, config: LlamaConfig):
super(QH360_VL_LlamaModel, self).__init__(config)
class QH360_VL_LlamaForCausalLM(LlamaForCausalLM, QH360_VL_MetaForCausalLM):
config_class = QH360_VLConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
config._attn_implementation == "flash_attention_2"
self.model = QH360_VL_LlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def build_conversation_input_ids(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
image = None,
image_processor=None,
):
input_msg = [
{
"role": "system",
"content": "You are a multilingual, helpful, respectful and honest assistant who can respond in the same language, depending on the language of the question. Try to be as helpful as possible while still being safe. Your answer should not contain anything that is false, unhealthy, harmful, immoral, racist, sexist, toxic, dangerous, or illegal, and if the question relates to such content, please decline to answer. Make sure your answer is socially fair and positive. If a question doesn't make any sense, or is inconsistent with the facts, explain why instead of answering the wrong answer. If you don't know the answer to a question, don't share false information."
},
{
"role": "user",
"content": "<|reserved_special_token_44|>"+ '\n' + query
}
]
input_ids = tokenizer.apply_chat_template(
input_msg,
add_generation_prompt=True,
padding="longest",
return_tensors="pt",
)
input_id_list = input_ids[0].tolist()
input_id_list[input_id_list.index(128049)]=-200
input_ids = torch.tensor(input_id_list, dtype=input_ids.dtype,device=input_ids.device)
input_ids = input_ids.unsqueeze(0)
image_tensor = self.process_images_slid_window(image,image_processor).unsqueeze(0)
return {
'input_ids': input_ids,
'image': image_tensor,
}
def process_images_slid_window(self, image, image_processor, vit_is=336):
def get_proper_imgsize(pil_img, vit_is):
max_w_h = vit_is * 2
new_pil_img = pil_img.resize((max_w_h, max_w_h))
return new_pil_img
def tensor_crop(tensor_array, left, upper, right, lower):
# tensor_array: C * H * W
return tensor_array[:, upper:lower, left:right]
def image_slid_window(image, num_slid_window):
# image: tensor, 3 * 336 * 336 or 3 * 672 * 672
# image: tensor, 3 * 224 * 224 or 3 * 448 * 448
if num_slid_window == 5:
image_x2, image_x1 = image[0], image[1]
vit_is = image_x1.shape[1]
h, w = image_x2.shape[1],image_x2.shape[2]
image0 = tensor_crop(image_x2, 0, 0, vit_is, vit_is)
image1 = tensor_crop(image_x2, w-vit_is, 0, w, vit_is)
image2 = tensor_crop(image_x2, 0, h-vit_is, vit_is, h)
image3 = tensor_crop(image_x2, w-vit_is, h-vit_is, w, h)
return torch.stack([image0, image1, image2, image3, image_x1])
else:
return image
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
vit_is = vit_is # vit_input_size, for simplicity
num_slid_window = 5
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = get_proper_imgsize(image, vit_is)
image_x2 = image_processor.preprocess(image, return_tensors='pt', do_resize=False, do_center_crop=False)['pixel_values'][0]
image_x1 = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
image = [image_x2, image_x1]
image = image_slid_window(image, num_slid_window)
return image |