bert-base-qarib / README.md
Ahmed Abdelali
Merge branch 'main' of https://huggingface.co/qarib/bert-base-qarib into main
7a17431
|
raw
history blame
5.37 kB
metadata
language: ar
tags:
  - pytorch
  - tf
  - QARiB
  - qarib
datasets:
  - arabic_billion_words
  - open_subtitles
  - twitter
metrics:
  - f1
widget:
  - text: ' شو عندكم يا [MASK] .'

QARiB: QCRI Arabic and Dialectal BERT

About QARiB

QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. lang:ar. For the text data, it was a combination from Arabic GigaWord, Abulkhair Arabic Corpus and OPUS.

QARiB: Is the Arabic name for "Boat".

Model and Parameters:

  • Data size: 14B tokens
  • Vocabulary: 64k
  • Iterations: 10M
  • Number of Layers: 12

Training QARiB

See details in Training QARiB

Using QARiB

You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see Using QARiB

How to use

You can use this model directly with a pipeline for masked language modeling:

>>>from transformers import pipeline
>>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k")

>>> fill_mask("شو عندكم يا [MASK]")
[{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, 
{'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, 
{'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, 
{'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, 
{'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}
]
>>> fill_mask("وقام المدير [MASK]")
[
{'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, 
{'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, 
{'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, 
{'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, 
{'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'}
]
>>> fill_mask("وقامت المديرة [MASK]")

[{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, 
{'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, 
{'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, 
{'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, 
{'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}]

>>> fill_mask("قللي وشفيييك يرحم [MASK]")
[{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, 
{'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, 
{'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, 
{'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, 
{'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}]

Evaluations:

Experiment mBERT AraBERT0.1 AraBERT1.0 ArabicBERT QARiB
Dialect Identification 6.06% 59.92% 59.85% 61.70% 65.21%
Emotion Detection 27.90% 43.89% 42.37% 41.65% 44.35%
Named-Entity Recognition (NER) 49.38% 64.97% 66.63% 64.04% 61.62%
Offensive Language Detection 83.14% 88.07% 88.97% 88.19% 91.94%
Sentiment Analysis 86.61% 90.80% 93.58% 83.27% 93.31%

Model Weights and Vocab Download

From Huggingface site: https://huggingface.co/qarib

Contacts

Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih

Reference

@article{abdelali2020qarib,
  title={QARiB: QCRI Arabic and Dialectal BERT},
  author={Ahmed, Abdelali and Sabit, Hassan and Hamdy, Mubarak and Kareem, Darwish and Younes, Samih},
  link={https://github.com/qcri/QARIB},
  year={2020}
}