|
--- |
|
license: apache-2.0 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-brooks-or-dunn |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-brooks-or-dunn |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1158 |
|
- Mean Iou: nan |
|
- Mean Accuracy: nan |
|
- Overall Accuracy: nan |
|
- Per Category Iou: [nan, nan] |
|
- Per Category Accuracy: [nan, nan] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:| |
|
| 0.5153 | 4.0 | 20 | 0.5276 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.4082 | 8.0 | 40 | 0.3333 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.3157 | 12.0 | 60 | 0.2773 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.2911 | 16.0 | 80 | 0.2389 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.2395 | 20.0 | 100 | 0.1982 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.2284 | 24.0 | 120 | 0.1745 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1818 | 28.0 | 140 | 0.1595 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1549 | 32.0 | 160 | 0.1556 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1351 | 36.0 | 180 | 0.1387 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1254 | 40.0 | 200 | 0.1263 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1412 | 44.0 | 220 | 0.1190 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
| 0.1179 | 48.0 | 240 | 0.1158 | nan | nan | nan | [nan, nan] | [nan, nan] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|