File size: 3,261 Bytes
d7017bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-brooks-or-dunn
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-brooks-or-dunn

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1158
- Mean Iou: nan
- Mean Accuracy: nan
- Overall Accuracy: nan
- Per Category Iou: [nan, nan]
- Per Category Accuracy: [nan, nan]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:|
| 0.5153        | 4.0   | 20   | 0.5276          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.4082        | 8.0   | 40   | 0.3333          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.3157        | 12.0  | 60   | 0.2773          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.2911        | 16.0  | 80   | 0.2389          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.2395        | 20.0  | 100  | 0.1982          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.2284        | 24.0  | 120  | 0.1745          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1818        | 28.0  | 140  | 0.1595          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1549        | 32.0  | 160  | 0.1556          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1351        | 36.0  | 180  | 0.1387          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1254        | 40.0  | 200  | 0.1263          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1412        | 44.0  | 220  | 0.1190          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |
| 0.1179        | 48.0  | 240  | 0.1158          | nan      | nan           | nan              | [nan, nan]       | [nan, nan]            |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1