File size: 3,588 Bytes
4a1f918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import random
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from data_transforms.glas_transform import GLAS_Transform
class GLAS_Dataset(Dataset):
def __init__(self, config, is_train=False, shuffle_list = True, apply_norm=True, no_text_mode=False) -> None:
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.num_classes = len(self.label_names)
self.config = config
self.apply_norm = apply_norm
self.no_text_mode = no_text_mode
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
#define data transform
self.data_transform = GLAS_Transform(config=config)
def __len__(self):
return len(self.img_path_list)
def populate_lists(self):
if self.is_train:
imgs_path = os.path.join(self.root_path, 'train')
labels_path = os.path.join(self.root_path, 'train')
else:
# imgs_path = os.path.join(self.root_path, 'validation')
# labels_path = os.path.join(self.root_path, 'validation')
imgs_path = os.path.join(self.root_path, 'test')
labels_path = os.path.join(self.root_path, 'test')
for img in os.listdir(imgs_path):
# print(img)
if (('jpg' not in img) and ('jpeg not in img') and ('png' not in img) and ('bmp' not in img)):
continue
if 'anno' in img:
continue
if self.no_text_mode:
self.img_names.append(img)
self.img_path_list.append(os.path.join(imgs_path,img))
self.label_path_list.append(os.path.join(labels_path, img[:-4]+'_anno.bmp'))
self.label_list.append('')
else:
for label_name in self.label_names:
self.img_names.append(img)
self.img_path_list.append(os.path.join(imgs_path,img))
self.label_path_list.append(os.path.join(labels_path, img[:-4]+'_anno.bmp'))
self.label_list.append(label_name)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
try:
label = torch.Tensor(np.array(Image.open(self.label_path_list[index])))
if len(label.shape)==3:
label = label[:,:,0]
except:
label = torch.zeros(img.shape[1], img.shape[2])
label = label.unsqueeze(0)
label = (label>0)+0
label_of_interest = self.label_list[index]
#convert all grayscale pixels due to resizing back to 0, 1
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
label = (label>=0.5)+0
label = label[0]
return img, label, self.img_path_list[index], label_of_interest
|