rexnet1_0x / README.md
frgfm
docs: Updated dataset reference
689637b
---
license: apache-2.0
tags:
- image-classification
- pytorch
- onnx
datasets:
- pyronear/openfire
---
# ReXNet-1.0x model
Pretrained on a dataset for wildfire binary classification (soon to be shared). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf).
## Model description
The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy.
## Installation
### Prerequisites
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision.
### Latest stable release
You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows:
```shell
pip install pyrovision
```
or using [conda](https://anaconda.org/pyronear/pyrovision):
```shell
conda install -c pyronear pyrovision
```
### Developer mode
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
```shell
git clone https://github.com/pyronear/pyro-vision.git
pip install -e pyro-vision/.
```
## Usage instructions
```python
from PIL import Image
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
from torchvision.transforms.functional import InterpolationMode
from pyrovision.models import model_from_hf_hub
model = model_from_hf_hub("pyronear/rexnet1_0x").eval()
img = Image.open(path_to_an_image).convert("RGB")
# Preprocessing
config = model.default_cfg
transform = Compose([
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
PILToTensor(),
ConvertImageDtype(torch.float32),
Normalize(config['mean'], config['std'])
])
input_tensor = transform(img).unsqueeze(0)
# Inference
with torch.inference_mode():
output = model(input_tensor)
probs = output.squeeze(0).softmax(dim=0)
```
## Citation
Original paper
```bibtex
@article{DBLP:journals/corr/abs-2007-00992,
author = {Dongyoon Han and
Sangdoo Yun and
Byeongho Heo and
Young Joon Yoo},
title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
Network},
journal = {CoRR},
volume = {abs/2007.00992},
year = {2020},
url = {https://arxiv.org/abs/2007.00992},
eprinttype = {arXiv},
eprint = {2007.00992},
timestamp = {Mon, 06 Jul 2020 15:26:01 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
Source of this implementation
```bibtex
@software{Fernandez_Holocron_2020,
author = {Fernandez, François-Guillaume},
month = {5},
title = {{Holocron}},
url = {https://github.com/frgfm/Holocron},
year = {2020}
}
```