File size: 2,580 Bytes
09813cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: mit
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: searchqueryner-be
  results: []
datasets:
- putazon/searchqueryner-100k
language:
- en
- es
pipeline_tag: token-classification
---

# bert-finetuned-ner

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [SearchQueryNER-100k](https://huggingface.co/datasets/putazon/searchqueryner-100k) dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
- Precision: 0.9999
- Recall: 0.9999
- F1: 0.9999
- Accuracy: 0.9999

## Model description

This model has been fine-tuned for Named Entity Recognition (NER) tasks on search queries, making it particularly effective for understanding user intent and extracting structured entities from short texts. The training leveraged the SearchQueryNER-100k dataset, which contains 13 entity types.

## Intended uses & limitations

### Intended uses:
- Extracting named entities such as locations, professions, and attributes from user search queries.
- Optimizing search engines by improving query understanding.

### Limitations:
- The model may not generalize well to domains outside of search queries.

## Training and evaluation data

The training and evaluation data were sourced from the [SearchQueryNER-100k](https://huggingface.co/putazon/searchqueryner-100k) dataset. The dataset includes tokenized search queries annotated with 13 entity types, divided into training, validation, and test sets:
- **Training set:** 102,931 examples
- **Validation set:** 20,420 examples
- **Test set:** 20,301 examples

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: ADAMW_TORCH with betas=(0.9,0.999), epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0011        | 1.0   | 12867 | 0.0009          | 0.9999    | 0.9999 | 0.9999 | 0.9999   |
| 0.002         | 2.0   | 25734 | 0.0004          | 0.9999    | 0.9999 | 0.9999 | 0.9999   |
| 0.0005        | 3.0   | 38601 | 0.0005          | 0.9999    | 0.9999 | 0.9999 | 0.9999   |

### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0