metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-herbify_plants
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9868421052631579
swin-tiny-patch4-window7-224-finetuned-herbify_plants
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0703
- Accuracy: 0.9868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7849 | 0.99 | 21 | 0.4281 | 0.8553 |
0.2498 | 1.98 | 42 | 0.1295 | 0.9737 |
0.1387 | 2.96 | 63 | 0.0703 | 0.9868 |
0.1039 | 3.95 | 84 | 0.0741 | 0.9737 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cpu
- Datasets 2.14.5
- Tokenizers 0.13.3