File size: 3,169 Bytes
2d24e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-small-af-ZA
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: af_za
split: train+validation
args: af_za
metrics:
- name: Wer
type: wer
value: 0.36644093303235514
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-af-ZA
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5728
- Wer Ortho: 0.3943
- Wer: 0.3664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.7731 | 1.45 | 100 | 0.7280 | 0.3863 | 0.3740 |
| 0.2103 | 2.9 | 200 | 0.5116 | 0.3859 | 0.3661 |
| 0.0633 | 4.35 | 300 | 0.4967 | 0.3008 | 0.2810 |
| 0.0249 | 5.8 | 400 | 0.5003 | 0.3477 | 0.3299 |
| 0.0143 | 7.25 | 500 | 0.5191 | 0.3660 | 0.3510 |
| 0.0053 | 8.7 | 600 | 0.5149 | 0.3221 | 0.3070 |
| 0.0035 | 10.14 | 700 | 0.5345 | 0.3443 | 0.3266 |
| 0.0027 | 11.59 | 800 | 0.5339 | 0.3344 | 0.3175 |
| 0.0026 | 13.04 | 900 | 0.5435 | 0.3328 | 0.3134 |
| 0.0037 | 14.49 | 1000 | 0.5346 | 0.2714 | 0.2506 |
| 0.0045 | 15.94 | 1100 | 0.5438 | 0.3389 | 0.3220 |
| 0.0028 | 17.39 | 1200 | 0.5588 | 0.2740 | 0.2551 |
| 0.0036 | 18.84 | 1300 | 0.5466 | 0.2702 | 0.2728 |
| 0.0035 | 20.29 | 1400 | 0.5364 | 0.3332 | 0.3119 |
| 0.0056 | 21.74 | 1500 | 0.5608 | 0.2721 | 0.2506 |
| 0.0037 | 23.19 | 1600 | 0.5443 | 0.3027 | 0.2833 |
| 0.0035 | 24.64 | 1700 | 0.5466 | 0.3866 | 0.3631 |
| 0.0024 | 26.09 | 1800 | 0.5628 | 0.3416 | 0.3198 |
| 0.0036 | 27.54 | 1900 | 0.5495 | 0.3122 | 0.2946 |
| 0.0016 | 28.99 | 2000 | 0.5728 | 0.3943 | 0.3664 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|