File size: 2,788 Bytes
6933cac
 
 
 
 
69f98a9
6933cac
 
604d506
 
 
69f98a9
 
6933cac
 
fd80bd2
6933cac
86f04dd
b022ce9
86f04dd
 
69f98a9
19b1ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f98a9
6933cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604d506
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: bsd-3-clause
base_model: pszemraj/pegasus-x-large-book-summary
tags:
- generated_from_trainer
- synthsumm
metrics:
- rouge
datasets:
- pszemraj/synthsumm
pipeline_tag: summarization
language:
- en
---

# pegasus-x-large-book_synthsumm

Fine-tuned on a synthetic dataset of curated long-context text and `GPT-3.5-turbo-1106` summaries spanning multiple domains + "random" long-context examples from pretraining datasets


Try it in [gradio demo](https://huggingface.co/spaces/pszemraj/document-summarization) | [.md with example outputs](evals-outputs/GAUNTLET.md) (gauntlet)

## Usage 

It's recommended to use this model with [beam search decoding](https://huggingface.co/docs/transformers/generation_strategies#beamsearch-decoding). If interested, you can also use the `textsum` [util repo](https://github.com/pszemraj/textsum) to have most of this abstracted out for you:



```bash
pip install -U textsum
```

```python
from textsum.summarize import Summarizer

model_name = "pszemraj/pegasus-x-large-book_synthsumm"
summarizer = Summarizer(model_name) # GPU auto-detected
text = "put the text you don't want to read here"
summary = summarizer.summarize_string(text)
print(summary)
```

## Details

This model is a fine-tuned version of [pszemraj/pegasus-x-large-book-summary](https://huggingface.co/pszemraj/pegasus-x-large-book-summary) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5481
- Rouge1: 48.141
- Rouge2: 19.1137
- Rougel: 33.647
- Rougelsum: 42.1211
- Gen Len: 73.9846

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 5309
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.7369        | 0.38  | 125  | 1.7140          | 43.0265 | 15.8613 | 30.5774 | 38.2507   | 77.0462 |
| 1.7736        | 0.77  | 250  | 1.6361          | 43.0209 | 15.2384 | 29.7678 | 37.4955   | 67.6    |
| 1.4251        | 1.15  | 375  | 1.5931          | 46.2138 | 17.5559 | 33.0091 | 41.0385   | 74.1077 |
| 1.2706        | 1.54  | 500  | 1.5635          | 44.6382 | 16.5917 | 30.7551 | 39.8466   | 71.7231 |
| 1.4844        | 1.92  | 625  | 1.5481          | 48.141  | 19.1137 | 33.647  | 42.1211   | 73.9846 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0