File size: 19,270 Bytes
e8d4939
 
 
 
 
 
 
 
 
 
 
 
 
d5e0992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f379c1
 
 
 
d5e0992
0f379c1
 
d5e0992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be91696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3657ae
 
 
 
 
 
 
 
 
 
 
62f8a60
b3657ae
 
 
62f8a60
b3657ae
 
 
62f8a60
b3657ae
 
 
62f8a60
b3657ae
 
 
 
 
 
 
 
 
f6be1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d4939
 
1c62066
e8d4939
2bd108e
fa508cb
e8d4939
 
 
2bd108e
e8d4939
1c5d929
e8d4939
 
 
2bd108e
 
7e2d3d3
fa508cb
742d2d9
d97a777
 
906cc66
 
f42b69e
906cc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e4511
e8d4939
 
 
ad46a6b
742d2d9
 
 
e8d4939
 
 
7e2d3d3
e8d4939
7e2d3d3
742d2d9
e8d4939
 
cec0b20
 
bd10ec8
cec0b20
e8d4939
 
7e2d3d3
cec0b20
7e2d3d3
cec0b20
e8d4939
 
 
 
cec0b20
e8d4939
 
cec0b20
e8d4939
 
cec0b20
7e2d3d3
ad46a6b
e8d4939
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
---
tags:
- summarization
- summary
- booksum
- long-document
- long-form
license: apache-2.0
datasets:
- kmfoda/booksum
metrics:
- rouge
widget:
- text: large earthquakes along a given fault segment do not occur at random intervals
    because it takes time to accumulate the strain energy for the rupture. The rates
    at which tectonic plates move and accumulate strain at their boundaries are approximately
    uniform. Therefore, in first approximation, one may expect that large ruptures
    of the same fault segment will occur at approximately constant time intervals.
    If subsequent main shocks have different amounts of slip across the fault, then
    the recurrence time may vary, and the basic idea of periodic mainshocks must be
    modified. For great plate boundary ruptures the length and slip often vary by
    a factor of 2. Along the southern segment of the San Andreas fault the recurrence
    interval is 145 years with variations of several decades. The smaller the standard
    deviation of the average recurrence interval, the more specific could be the long
    term prediction of a future mainshock.
  example_title: earthquakes
- text: " A typical feed-forward neural field algorithm. Spatiotemporal coordinates\
    \ are fed into a neural network that predicts values in the reconstructed domain.\
    \ Then, this domain is mapped to the sensor domain where sensor measurements are\
    \ available as supervision. Class and Section Problems Addressed Generalization\
    \ (Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid\
    \ Representations (Section 3) Computation & memory efficiency, representation\
    \ capacity, editability: Forward Maps (Section 4) Inverse problems Network Architecture\
    \ (Section 5) Spectral bias, integration & derivatives. Manipulating Neural Fields\
    \ (Section 6) Edit ability, constraints, regularization. Table 2: The five classes\
    \ of techniques in the neural field toolbox each addresses problems that arise\
    \ in learning, inference, and control. (Section 3). We can supervise reconstruction\
    \ via differentiable forward maps that transform Or project our domain (e.g, 3D\
    \ reconstruction via 2D images; Section 4) With appropriate network architecture\
    \ choices, we can overcome neural network spectral biases (blurriness) and efficiently\
    \ compute derivatives and integrals (Section 5). Finally, we can manipulate neural\
    \ fields to add constraints and regularizations, and to achieve editable representations\
    \ (Section 6). Collectively, these classes constitute a 'toolbox' of techniques\
    \ to help solve problems with neural fields There are three components in a conditional\
    \ neural field: (1) An encoder or inference function \u20AC that outputs the conditioning\
    \ latent variable 2 given an observation 0 E(0) =2. 2 is typically a low-dimensional\
    \ vector, and is often referred to aS a latent code Or feature code_ (2) A mapping\
    \ function 4 between Z and neural field parameters O: Y(z) = O; (3) The neural\
    \ field itself $. The encoder \u20AC finds the most probable z given the observations\
    \ O: argmaxz P(2/0). The decoder maximizes the inverse conditional probability\
    \ to find the most probable 0 given Z: arg- max P(Olz). We discuss different encoding\
    \ schemes with different optimality guarantees (Section 2.1.1), both global and\
    \ local conditioning (Section 2.1.2), and different mapping functions Y (Section\
    \ 2.1.3) 2. Generalization Suppose we wish to estimate a plausible 3D surface\
    \ shape given a partial or noisy point cloud. We need a suitable prior over the\
    \ sur- face in its reconstruction domain to generalize to the partial observations.\
    \ A neural network expresses a prior via the function space of its architecture\
    \ and parameters 0, and generalization is influenced by the inductive bias of\
    \ this function space (Section 5)."
  example_title: scientific paper
- text: ' the big variety of data coming from diverse sources is one of the key properties
    of the big data phenomenon. It is, therefore, beneficial to understand how data
    is generated in various environments and scenarios, before looking at what should
    be done with this data and how to design the best possible architecture to accomplish
    this The evolution of IT architectures, described in Chapter 2, means that the
    data is no longer processed by a few big monolith systems, but rather by a group
    of services In parallel to the processing layer, the underlying data storage has
    also changed and became more distributed This, in turn, required a significant
    paradigm shift as the traditional approach to transactions (ACID) could no longer
    be supported. On top of this, cloud computing is becoming a major approach with
    the benefits of reducing costs and providing on-demand scalability but at the
    same time introducing concerns about privacy, data ownership, etc In the meantime
    the Internet continues its exponential growth: Every day both structured and unstructured
    data is published and available for processing: To achieve competitive advantage
    companies have to relate their corporate resources to external services, e.g.
    financial markets, weather forecasts, social media, etc While several of the sites
    provide some sort of API to access the data in a more orderly fashion; countless
    sources require advanced web mining and Natural Language Processing (NLP) processing
    techniques: Advances in science push researchers to construct new instruments
    for observing the universe O conducting experiments to understand even better
    the laws of physics and other domains. Every year humans have at their disposal
    new telescopes, space probes, particle accelerators, etc These instruments generate
    huge streams of data, which need to be stored and analyzed. The constant drive
    for efficiency in the industry motivates the introduction of new automation techniques
    and process optimization: This could not be done without analyzing the precise
    data that describe these processes. As more and more human tasks are automated,
    machines provide rich data sets, which can be analyzed in real-time to drive efficiency
    to new levels. Finally, it is now evident that the growth of the Internet of Things
    is becoming a major source of data. More and more of the devices are equipped
    with significant computational power and can generate a continuous data stream
    from their sensors. In the subsequent sections of this chapter, we will look at
    the domains described above to see what they generate in terms of data sets. We
    will compare the volumes but will also look at what is characteristic and important
    from their respective points of view. 3.1 The Internet is undoubtedly the largest
    database ever created by humans. While several well described; cleaned, and structured
    data sets have been made available through this medium, most of the resources
    are of an ambiguous, unstructured, incomplete or even erroneous nature. Still,
    several examples in the areas such as opinion mining, social media analysis, e-governance,
    etc, clearly show the potential lying in these resources. Those who can successfully
    mine and interpret the Internet data can gain unique insight and competitive advantage
    in their business An important area of data analytics on the edge of corporate
    IT and the Internet is Web Analytics.'
  example_title: data science textbook
- text: "Transformer-based models have shown to be very useful for many NLP tasks.\
    \ However, a major limitation of transformers-based models is its O(n^2)O(n 2)\
    \ time & memory complexity (where nn is sequence length). Hence, it's computationally\
    \ very expensive to apply transformer-based models on long sequences n > 512n>512.\
    \ Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention\
    \ try to remedy this problem by approximating the full attention matrix. You can\
    \ checkout \U0001F917's recent blog post in case you are unfamiliar with these\
    \ models.\nBigBird (introduced in paper) is one of such recent models to address\
    \ this issue. BigBird relies on block sparse attention instead of normal attention\
    \ (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a\
    \ much lower computational cost compared to BERT. It has achieved SOTA on various\
    \ tasks involving very long sequences such as long documents summarization, question-answering\
    \ with long contexts.\nBigBird RoBERTa-like model is now available in \U0001F917\
    Transformers. The goal of this post is to give the reader an in-depth understanding\
    \ of big bird implementation & ease one's life in using BigBird with \U0001F917\
    Transformers. But, before going into more depth, it is important to remember that\
    \ the BigBird's attention is an approximation of BERT's full attention and therefore\
    \ does not strive to be better than BERT's full attention, but rather to be more\
    \ efficient. It simply allows to apply transformer-based models to much longer\
    \ sequences since BERT's quadratic memory requirement quickly becomes unbearable.\
    \ Simply put, if we would have \u221E compute & \u221E time, BERT's attention\
    \ would be preferred over block sparse attention (which we are going to discuss\
    \ in this post).\nIf you wonder why we need more compute when working with longer\
    \ sequences, this blog post is just right for you!\nSome of the main questions\
    \ one might have when working with standard BERT-like attention include:\nDo all\
    \ tokens really have to attend to all other tokens? Why not compute attention\
    \ only over important tokens? How to decide what tokens are important? How to\
    \ attend to just a few tokens in a very efficient way? In this blog post, we will\
    \ try to answer those questions.\nWhat tokens should be attended to? We will give\
    \ a practical example of how attention works by considering the sentence 'BigBird\
    \ is now available in HuggingFace for extractive question answering'. In BERT-like\
    \ attention, every word would simply attend to all other tokens.\nLet's think\
    \ about a sensible choice of key tokens that a queried token actually only should\
    \ attend to by writing some pseudo-code. Will will assume that the token available\
    \ is queried and build a sensible list of key tokens to attend to.\n>>> # let's\
    \ consider following sentence as an example >>> example = ['BigBird', 'is', 'now',\
    \ 'available', 'in', 'HuggingFace', 'for', 'extractive', 'question', 'answering']\n\
    >>> # further let's assume, we're trying to understand the representation of 'available'\
    \ i.e. >>> query_token = 'available' >>> # We will initialize an empty `set` and\
    \ fill up the tokens of our interest as we proceed in this section. >>> key_tokens\
    \ = [] # => currently 'available' token doesn't have anything to attend Nearby\
    \ tokens should be important because, in a sentence (sequence of words), the current\
    \ word is highly dependent on neighboring past & future tokens. This intuition\
    \ is the idea behind the concept of sliding attention."
  example_title: bigbird blog intro
- text: "To be fair, you have to have a very high IQ to understand Rick and Morty.\
    \ The humour is extremely subtle, and without a solid grasp of theoretical physics\
    \ most of the jokes will go over a typical viewer's head. There's also Rick's\
    \ nihilistic outlook, which is deftly woven into his characterisation- his personal\
    \ philosophy draws heavily from Narodnaya Volya literature, for instance. The\
    \ fans understand this stuff; they have the intellectual capacity to truly appreciate\
    \ the depths of these jokes, to realise that they're not just funny- they say\
    \ something deep about LIFE. As a consequence people who dislike Rick & Morty\
    \ truly ARE idiots- of course they wouldn't appreciate, for instance, the humour\
    \ in Rick's existential catchphrase 'Wubba Lubba Dub Dub,' which itself is a cryptic\
    \ reference to Turgenev's Russian epic Fathers and Sons. I'm smirking right now\
    \ just imagining one of those addlepated simpletons scratching their heads in\
    \ confusion as Dan Harmon's genius wit unfolds itself on their television screens.\
    \ What fools.. how I pity them. \U0001F602\nAnd yes, by the way, i DO have a Rick\
    \ & Morty tattoo. And no, you cannot see it. It's for the ladies' eyes only- and\
    \ even then they have to demonstrate that they're within 5 IQ points of my own\
    \ (preferably lower) beforehand. Nothin personnel kid \U0001F60E"
  example_title: Richard & Mortimer
parameters:
  max_length: 64
  min_length: 8
  no_repeat_ngram_size: 3
  early_stopping: true
  repetition_penalty: 3.5
  length_penalty: 0.3
  encoder_no_repeat_ngram_size: 3
  num_beams: 4
model-index:
- name: pszemraj/long-t5-tglobal-base-16384-book-summary
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 33.7197
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 8.5493
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 25.1917
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 29.2739
      verified: true
    - name: loss
      type: loss
      value: .nan
      verified: true
    - name: gen_len
      type: gen_len
      value: 34.464
      verified: true
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: xsum
      type: xsum
      config: default
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 20.5398
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 3.4827
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 13.647
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 15.8818
      verified: true
    - name: loss
      type: loss
      value: .nan
      verified: true
    - name: gen_len
      type: gen_len
      value: 81.4964
      verified: true
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: kmfoda/booksum
      type: kmfoda/booksum
      config: kmfoda--booksum
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 36.2117
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 6.0467
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 16.6181
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 33.1837
      verified: true
    - name: loss
      type: loss
      value: .nan
      verified: true
    - name: gen_len
      type: gen_len
      value: 248.7994
      verified: true
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 30.7382
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 7.3107
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 17.7773
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 27.4241
      verified: true
    - name: loss
      type: loss
      value: .nan
      verified: true
    - name: gen_len
      type: gen_len
      value: 125.228
      verified: true
---

# long-t5-tglobal-base-16384 + BookSum

- summarize long text and get a SparkNotes-esque summary of arbitrary topics!
- generalizes reasonably well to academic & narrative text. 

## Cheeky Proof-of-Concept

A summary of the [infamous navy seals copypasta](https://knowyourmeme.com/memes/navy-seal-copypasta):

> The narrator tells us that he's graduated from the Navy seals and has been involved in many secret raids. He's also one of the best snipers in the entire U.S. military. He promises to "wipe you out with precision" when they meet again.

## Model description

A fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the `kmfoda/booksum` dataset:

- 30+ epochs of fine-tuning from the base model on V100/A100 GPUs
- all training used 16384 token input / 1024 max output

Read the paper by Guo et al. here: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf) 

## How-To in Python

Install/update transformers `pip install -U transformers`

Summarize text with pipeline:

```
from transformers import pipeline

summarizer = pipeline(
    'summarization',
    'pszemraj/long-t5-tglobal-base-16384-book-summary',
    )
long_text = "Here is a lot of text I don't want to read. Replace me"

result = summarizer(long_text)
print(result[0]['summary_text'])
```

Pass [other parameters related to beam search textgen](https://huggingface.co/blog/how-to-generate) when calling `summarizer` to get even higher quality results.

## Intended uses & limitations

- At the time of writing, the model is not _fully converged_ despite training for 20+ epochs. This checkpoint is serviceable enough (see examples).
  - I plan to update this page with newer checkpoints and post some metrics over time.
  - Compare performance to [LED-base](https://huggingface.co/pszemraj/led-base-book-summary) trained on the same dataset (API gen parameters are the same).
- while this model seems to improve upon factual consistency, **do not take summaries to be foolproof and check things that seem odd**.

## Training and evaluation data

`kmfoda/booksum` dataset on HuggingFace - read [the original paper here](https://arxiv.org/abs/2105.08209). Summaries longer than 1024 LongT5 tokens were filtered out to prevent the model from learning to generate "partial" summaries.

_NOTE: early checkpoints of this model were trained on a "smaller" subsection of the dataset as it was filtered for summaries of **1024 characters**. This was subsequently caught and adjusted to **1024 tokens** and then trained further for 10+ epochs._

## Training procedure

### Updates:

- July 3, 2022: Added a new version with several epochs of additional training that is more performant in general.

### Training hyperparameters

The following hyperparameters were used during the **most recent** training round\*:

- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2


\*_Prior training sessions used roughly similar parameters; multiple sessions were required as this takes aeons to train_

### Training results



### Framework versions

- Transformers 4.20.1
- Pytorch 1.10.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1