gpt-peter-2.7B / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
5a98bf1
|
raw
history blame
1.94 kB
---
tags:
- gpt-neo
- gpt-peter
- chatbot
inference: false
base_model: EleutherAI/gpt-neo-2.7B
---
# pszemraj/gpt-peter-2.7B
- This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on about 80k WhatsApp and iMessage texts.
- The model is too large to use the inference API. linked [here](https://colab.research.google.com/gist/pszemraj/a59b43813437b43973c8f8f9a3944565/testing-pszemraj-gpt-peter-2-7b.ipynb) is a notebook for testing in Colab.
- alternatively, you can message [a bot on telegram](http://t.me/GPTPeter_bot) where I test LLMs for dialogue generation
- the telegram bot code and the model training code can be found [in this repository](https://github.com/pszemraj/ai-msgbot)
## Usage in python
Install the transformers library if you don't have it:
```
pip install -U transformers
```
load the model into a `pipeline` object:
```
from transformers import pipeline
import torch
my_chatbot = pipeline('text-generation',
'pszemraj/gpt-peter-2.7B',
device=0 if torch.cuda.is_available() else -1,
)
```
generate text!
```
my_chatbot('Did you ever hear the tragedy of Darth Plagueis The Wise?')
```
_(example above for simplicity, but adding generation parameters such as `no_repeat_ngram_size` are recommended to get better generations)_
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6