pszemraj's picture
Model save
160c7d9 verified
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
base_model: facebook/dinov2-base-imagenet1k-1-layer
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
  - matthews_correlation
model-index:
  - name: dinov2-base-imagenet1k-1-layer-boulderspot-vN
    results: []

dinov2-base-imagenet1k-1-layer-boulderspot-vN

This model is a fine-tuned version of facebook/dinov2-base-imagenet1k-1-layer on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0519
  • Accuracy: 0.9810
  • F1: 0.9809
  • Precision: 0.9808
  • Recall: 0.9810
  • Matthews Correlation: 0.8501

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 7395
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Matthews Correlation
0.1596 1.0 203 0.0733 0.9766 0.9759 0.9757 0.9766 0.8079
0.0635 2.0 406 0.1276 0.9474 0.9522 0.9619 0.9474 0.6845
0.1031 3.0 609 0.0602 0.9751 0.9755 0.9760 0.9751 0.8118
0.0587 4.0 813 0.0512 0.9737 0.9734 0.9732 0.9737 0.7905
0.038 4.99 1015 0.0519 0.9810 0.9809 0.9808 0.9810 0.8501

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.4.0.dev20240328+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2