pszemraj commited on
Commit
8ea9d7e
1 Parent(s): 130d31e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -0
README.md CHANGED
@@ -28,6 +28,7 @@ This is a model fine-tuned to classify whether an aerial/satellite image contain
28
  You can find some images to test inference with [in this old repo from the original project](https://github.com/pszemraj/BoulderAreaDetector/tree/cbb22bdb3373b4b72d798dedfcb28543c0dc769d/test_images)
29
 
30
 
 
31
  ## Model description
32
 
33
  This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on the pszemraj/boulderspot dataset.
@@ -39,10 +40,30 @@ It achieves the following results on the evaluation set:
39
  - Recall: 0.9883
40
  - Matthews Correlation: 0.8962
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ## Intended uses & limitations
43
 
44
  Classification of aerial/satellite imagery, ideally with spacial resolution 10-25 cm (_i.e. for 10 cm, each pixel in the image corresonds to approx. 10 cm x 10 cm area on the ground_). It may be suitable outside of that, but should be validated as other resolutions were not present in the training data.
45
 
 
46
  ## Training procedure
47
 
48
  ### Training hyperparameters
 
28
  You can find some images to test inference with [in this old repo from the original project](https://github.com/pszemraj/BoulderAreaDetector/tree/cbb22bdb3373b4b72d798dedfcb28543c0dc769d/test_images)
29
 
30
 
31
+
32
  ## Model description
33
 
34
  This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co/facebook/convnextv2-nano-22k-384) on the pszemraj/boulderspot dataset.
 
40
  - Recall: 0.9883
41
  - Matthews Correlation: 0.8962
42
 
43
+ ## example usage
44
+
45
+ ```py
46
+ import requests
47
+ from PIL import Image
48
+ from transformers import pipeline
49
+
50
+ pipe = pipeline(
51
+ "image-classification",
52
+ model="pszemraj/convnextv2-nano-22k-384-boulderspot",
53
+ )
54
+
55
+ url = "https://huggingface.co/pszemraj/convnextv2-nano-22k-384-boulderspot/resolve/main/test_img_magic_wood.png?download=true"
56
+ image = Image.open(requests.get(url, stream=True).raw)
57
+ result = pipe(image)[0]
58
+ print(result)
59
+ # image.show()
60
+ ```
61
+
62
  ## Intended uses & limitations
63
 
64
  Classification of aerial/satellite imagery, ideally with spacial resolution 10-25 cm (_i.e. for 10 cm, each pixel in the image corresonds to approx. 10 cm x 10 cm area on the ground_). It may be suitable outside of that, but should be validated as other resolutions were not present in the training data.
65
 
66
+
67
  ## Training procedure
68
 
69
  ### Training hyperparameters