File size: 3,090 Bytes
0a54870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
- flux
- flux-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
inference: true
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# promeai/FLUX.1-controlnet-lineart-promeai

`promeai/FLUX.1-controlnet-lineart-promeai` holds controlnet weights trained on black-forest-labs/FLUX.1-dev with lineart condition.


Here are some example images.

```
prompt: cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open holding a fancy black forest cake with candles on top in the kitchen of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere
```
![input-control)](./images/example-control.jpg)
![output)](./images/example-output.jpg)



## Intended uses & limitations


## How to use

### with diffusers

```python
# TODO: add an example code snippet for running this diffusion pipeline
import torch
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel

base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")

control_image = load_image("./images/example-control.jpg")
prompt = "cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open holding a fancy black forest cake with candles on top in the kitchen of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere"
image = pipe(
    prompt, 
    control_image=control_image,
    controlnet_conditioning_scale=0.6,
    num_inference_steps=28, 
    guidance_scale=3.5,
).images[0]
image.save("./image.jpg")
```

### with comfyui 
An [example comfyui workflow](./example_workflow.json)is also provided. 


## Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

This controlnet is trained on one A100-80G GPU, with fine grained realword images dataset, with imagesize 512 + batchsize 3 (earlier period), and imagesize 1024 + batchsize 1 (after 512 training). With above configs, the GPU memory was about 70G and takes around 3 days to get this 14000steps-checkpoint. Training progress is going on, more ckpts will be released.