mmarimon commited on
Commit
82b341e
1 Parent(s): a21e513

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -26
README.md CHANGED
@@ -55,30 +55,38 @@ widget:
55
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment.
56
 
57
  ## Table of Contents
58
- - [Model Description](#model-description)
59
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
60
- - [How to Use](#how-to-use)
 
 
 
 
61
  - [Training](#training)
62
- - [Training Data](#training-data)
63
- - [Training Procedure](#training-procedure)
64
  - [Evaluation](#evaluation)
65
- - [Variable and Metrics](#variable-and-metrics)
66
- - [Evaluation Results](#evaluation-results)
67
- - [Licensing Information](#licensing-information)
68
- - [Citation Information](#citation-information)
69
- - [Funding](#funding)
70
- - [Contributions](#contributions)
71
- - [Disclaimer](#disclaimer)
 
 
 
 
72
 
73
  ## Model description
74
 
75
  The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
76
 
77
- ## Intended Uses and Limitations
78
 
79
  **roberta-base-ca-v2-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases.
80
 
81
- ## How to Use
82
 
83
  Here is how to use this model:
84
 
@@ -93,17 +101,20 @@ te_results = nlp(example)
93
  pprint(te_results)
94
  ```
95
 
 
 
 
96
  ## Training
97
 
98
  ### Training data
99
  We used the TE dataset in Catalan called [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
100
 
101
- ### Training Procedure
102
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
103
 
104
  ## Evaluation
105
 
106
- ### Variable and Metrics
107
 
108
  This model was finetuned maximizing accuracy.
109
 
@@ -120,11 +131,24 @@ We evaluated the roberta-base-ca-cased-te on the TE-ca test set against standard
120
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
121
 
122
 
123
- ## Licensing Information
 
 
 
 
 
 
 
 
 
124
 
 
125
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
126
 
127
- ## Citation Information
 
 
 
128
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
129
  ```bibtex
130
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -148,14 +172,7 @@ If you use any of these resources (datasets or models) in your work, please cite
148
  }
149
  ```
150
 
151
- ## Funding
152
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
153
-
154
- ## Contributions
155
-
156
- [N/A]
157
-
158
- ## Disclaimer
159
 
160
  <details>
161
  <summary>Click to expand</summary>
 
55
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment.
56
 
57
  ## Table of Contents
58
+ <details>
59
+ <summary>Click to expand</summary>
60
+
61
+ - [Model description](#model-description)
62
+ - [Intended uses and limitations](#intended-use)
63
+ - [How to use](#how-to-use)
64
+ - [Limitations and bias](#limitations-and-bias)
65
  - [Training](#training)
66
+ - [Training data](#training-data)
67
+ - [Training procedure](#training-procedure)
68
  - [Evaluation](#evaluation)
69
+ - [Variable and metrics](#variable-and-metrics)
70
+ - [Evaluation results](#evaluation-results)
71
+ - [Additional information](#additional-information)
72
+ - [Author](#author)
73
+ - [Contact information](#contact-information)
74
+ - [Copyright](#copyright)
75
+ - [Licensing information](#licensing-information)
76
+ - [Funding](#funding)
77
+ - [Citing information](#citing-information)
78
+ - [Disclaimer](#disclaimer)
79
+ </details>
80
 
81
  ## Model description
82
 
83
  The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
84
 
85
+ ## Intended uses and limitations
86
 
87
  **roberta-base-ca-v2-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases.
88
 
89
+ ## How to use
90
 
91
  Here is how to use this model:
92
 
 
101
  pprint(te_results)
102
  ```
103
 
104
+ ## Limitations and bias
105
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
106
+
107
  ## Training
108
 
109
  ### Training data
110
  We used the TE dataset in Catalan called [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation.
111
 
112
+ ### Training procedure
113
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
114
 
115
  ## Evaluation
116
 
117
+ ### Variable and metrics
118
 
119
  This model was finetuned maximizing accuracy.
120
 
 
131
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
132
 
133
 
134
+ ## Additional information
135
+
136
+ ### Author
137
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
138
+
139
+ ### Contact information
140
+ For further information, send an email to aina@bsc.es
141
+
142
+ ### Copyright
143
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
144
 
145
+ ### Licensing information
146
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
147
 
148
+ ### Funding
149
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
150
+
151
+ ### Citation information
152
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
153
  ```bibtex
154
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
172
  }
173
  ```
174
 
175
+ ### Disclaimer
 
 
 
 
 
 
 
176
 
177
  <details>
178
  <summary>Click to expand</summary>