mmarimon commited on
Commit
70a22b8
·
1 Parent(s): adbe584

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -27
README.md CHANGED
@@ -53,29 +53,39 @@ widget:
53
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Text Classification.
54
 
55
  ## Table of Contents
56
- - [Model Description](#model-description)
57
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
58
- - [How to Use](#how-to-use)
 
 
 
 
59
  - [Training](#training)
60
- - [Training Data](#training-data)
61
- - [Training Procedure](#training-procedure)
 
 
62
  - [Evaluation](#evaluation)
63
- - [Variable and Metrics](#variable-and-metrics)
64
- - [Evaluation Results](#evaluation-results)
65
- - [Licensing Information](#licensing-information)
66
- - [Citation Information](#citation-information)
67
- - [Funding](#funding)
68
- - [Contributions](#contributions)
69
- - [Disclaimer](#disclaimer)
 
 
 
 
70
 
71
  ## Model description
72
  The **roberta-base-ca-v2-cased-tc** is a Text Classification (TC) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
73
 
74
- ## Intended Uses and Limitations
75
 
76
  **roberta-base-ca-v2-cased-tc** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases.
77
 
78
- ## How to Use
79
 
80
  Here is how to use this model:
81
 
@@ -90,17 +100,21 @@ tc_results = nlp(example)
90
  pprint(tc_results)
91
  ```
92
 
 
 
 
 
93
  ## Training
94
 
95
  ### Training data
96
  We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation.
97
 
98
- ### Training Procedure
99
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
100
 
101
  ## Evaluation
102
 
103
- ### Variable and Metrics
104
 
105
  This model was finetuned maximizing accuracy.
106
 
@@ -116,10 +130,24 @@ We evaluated the _roberta-base-ca-v2-cased-tc_ on the TeCla test set against sta
116
 
117
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
118
 
119
- ## Licensing Information
120
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
122
 
 
 
 
123
  ## Citation Information
124
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
125
  ```bibtex
@@ -144,16 +172,7 @@ If you use any of these resources (datasets or models) in your work, please cite
144
  }
145
  ```
146
 
147
- ## Funding
148
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
149
-
150
-
151
- ## Contributions
152
-
153
- [N/A]
154
-
155
-
156
- ## Disclaimer
157
 
158
  <details>
159
  <summary>Click to expand</summary>
 
53
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Text Classification.
54
 
55
  ## Table of Contents
56
+ <details>
57
+ <summary>Click to expand</summary>
58
+
59
+ - [Model description](#model-description)
60
+ - [Intended uses and limitations](#intended-use)
61
+ - [How to use](#how-to-use)
62
+ - [Limitations and bias](#limitations-and-bias)
63
  - [Training](#training)
64
+ - [Training data](#training-data)
65
+ - [Training procedure](#training-procedure)
66
+ - [Tokenization](#tokenization)
67
+ - [Hyperparameters](#hyperparameters)
68
  - [Evaluation](#evaluation)
69
+ - [Variable and metrics](#variable-and-metrics)
70
+ - [Evaluation results](#evaluation-results)
71
+ - [Additional information](#additional-information)
72
+ - [Author](#author)
73
+ - [Contact information](#contact-information)
74
+ - [Copyright](#copyright)
75
+ - [Licensing information](#licensing-information)
76
+ - [Funding](#funding)
77
+ - [Citing information](#citing-information)
78
+ - [Disclaimer](#disclaimer)
79
+ </details>
80
 
81
  ## Model description
82
  The **roberta-base-ca-v2-cased-tc** is a Text Classification (TC) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
83
 
84
+ ## Intended uses and limitations
85
 
86
  **roberta-base-ca-v2-cased-tc** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases.
87
 
88
+ ## How to use
89
 
90
  Here is how to use this model:
91
 
 
100
  pprint(tc_results)
101
  ```
102
 
103
+ ## Limitations and bias
104
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
105
+
106
+
107
  ## Training
108
 
109
  ### Training data
110
  We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation.
111
 
112
+ ### Training procedure
113
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
114
 
115
  ## Evaluation
116
 
117
+ ### Variable and metrics
118
 
119
  This model was finetuned maximizing accuracy.
120
 
 
130
 
131
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
132
 
 
133
 
134
+ ## Additional information
135
+
136
+ ### Author
137
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
138
+
139
+ ### Contact information
140
+ For further information, send an email to aina@bsc.es
141
+
142
+ ### Copyright
143
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
144
+
145
+ ### Licensing information
146
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
147
 
148
+ ### Funding
149
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
150
+
151
  ## Citation Information
152
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
153
  ```bibtex
 
172
  }
173
  ```
174
 
175
+ ### Disclaimer
 
 
 
 
 
 
 
 
 
176
 
177
  <details>
178
  <summary>Click to expand</summary>