mmarimon commited on
Commit
be9aaf1
1 Parent(s): 03a7032

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -31
README.md CHANGED
@@ -56,30 +56,38 @@ widget:
56
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Part-of-speech-tagging (POS)
57
 
58
  ## Table of Contents
59
- - [Model Description](#model-description)
60
- - [Intended Uses and Limitations](#intended-uses-and-limitations)
61
- - [How to Use](#how-to-use)
 
 
 
 
 
 
62
  - [Training](#training)
63
- - [Training Data](#training-data)
64
- - [Training Procedure](#training-procedure)
65
  - [Evaluation](#evaluation)
66
- - [Variable and Metrics](#variable-and-metrics)
67
- - [Evaluation Results](#evaluation-results)
68
- - [Licensing Information](#licensing-information)
69
- - [Citation Information](#citation-information)
70
- - [Funding](#funding)
71
- - [Contributions](#contributions)
72
- - [Disclaimer](#disclaimer)
 
 
 
 
73
 
74
  ## Model description
75
-
76
  The **roberta-base-ca-v2-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
77
 
78
- ## Intended Uses and Limitations
79
-
80
  **roberta-base-ca-v2-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
81
 
82
- ## How to Use
83
 
84
  Here is how to use this model:
85
 
@@ -93,17 +101,21 @@ example = "Em dic Lluïsa i visc a Santa Maria del Camí."
93
  pos_results = nlp(example)
94
  pprint(pos_results)
95
  ```
 
 
 
 
96
  ## Training
97
 
98
  ### Training data
99
  We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation.
100
 
101
- ### Training Procedure
102
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
103
 
104
  ## Evaluation
105
 
106
- ### Variable and Metrics
107
 
108
  This model was finetuned maximizing F1 score.
109
 
@@ -119,11 +131,24 @@ We evaluated the _roberta-base-ca-v2-cased-pos_ on the Ancora-ca-ner test set ag
119
 
120
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
121
 
122
- ## Licensing Information
 
 
 
 
 
 
123
 
 
 
 
 
124
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
125
 
126
- ## Citation Information
 
 
 
127
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
128
  ```bibtex
129
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -147,17 +172,7 @@ If you use any of these resources (datasets or models) in your work, please cite
147
  }
148
  ```
149
 
150
- ## Funding
151
-
152
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
153
-
154
-
155
- ## Contributions
156
-
157
- [N/A]
158
-
159
-
160
- ## Disclaimer
161
 
162
  <details>
163
  <summary>Click to expand</summary>
 
56
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Part-of-speech-tagging (POS)
57
 
58
  ## Table of Contents
59
+
60
+ ## Table of Contents
61
+ <details>
62
+ <summary>Click to expand</summary>
63
+
64
+ - [Model description](#model-description)
65
+ - [Intended uses and limitations](#intended-use)
66
+ - [How to use](#how-to-use)
67
+ - [Limitations and bias](#limitations-and-bias)
68
  - [Training](#training)
69
+ - [Training data](#training-data)
70
+ - [Training procedure](#training-procedure)
71
  - [Evaluation](#evaluation)
72
+ - [Variable and metrics](#variable-and-metrics)
73
+ - [Evaluation results](#evaluation-results)
74
+ - [Additional information](#additional-information)
75
+ - [Author](#author)
76
+ - [Contact information](#contact-information)
77
+ - [Copyright](#copyright)
78
+ - [Licensing information](#licensing-information)
79
+ - [Funding](#funding)
80
+ - [Citing information](#citing-information)
81
+ - [Disclaimer](#disclaimer)
82
+ </details>
83
 
84
  ## Model description
 
85
  The **roberta-base-ca-v2-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
86
 
87
+ ## Intended uses and limitations
 
88
  **roberta-base-ca-v2-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
89
 
90
+ ## How to use
91
 
92
  Here is how to use this model:
93
 
 
101
  pos_results = nlp(example)
102
  pprint(pos_results)
103
  ```
104
+
105
+ ## Limitations and bias
106
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
107
+
108
  ## Training
109
 
110
  ### Training data
111
  We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation.
112
 
113
+ ### Training procedure
114
  The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
115
 
116
  ## Evaluation
117
 
118
+ ### Variable and metrics
119
 
120
  This model was finetuned maximizing F1 score.
121
 
 
131
 
132
  For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
133
 
134
+ ## Additional information
135
+
136
+ ### Author
137
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
138
+
139
+ ### Contact information
140
+ For further information, send an email to aina@bsc.es
141
 
142
+ ### Copyright
143
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
144
+
145
+ ### Licensing information
146
  [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
147
 
148
+ ### Funding
149
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
150
+
151
+ ### Citation information
152
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
153
  ```bibtex
154
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
172
  }
173
  ```
174
 
175
+ ### Disclaimer
 
 
 
 
 
 
 
 
 
 
176
 
177
  <details>
178
  <summary>Click to expand</summary>