File size: 2,039 Bytes
e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d e0ac6d1 3e45b2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1696
- Accuracy: 0.9308
- Class 0 Precision: 0.9947
- Class 0 Recall: 0.9319
- Class 0 F1: 0.9623
- Class 0 Support: 132570
- Class 1 Precision: 0.4316
- Class 1 Recall: 0.9118
- Class 1 F1: 0.5859
- Class 1 Support: 7517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Class 0 Precision | Class 0 Recall | Class 0 F1 | Class 0 Support | Class 1 Precision | Class 1 Recall | Class 1 F1 | Class 1 Support |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:----------:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|
| 0.2116 | 0.9998 | 2830 | 0.1709 | 0.9437 | 0.9334 | 0.9671 | 0.9500 | 6265 | 0.9574 | 0.9146 | 0.9355 | 5058 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|