File size: 4,199 Bytes
645bae1
 
 
 
3feb5cd
 
645bae1
3feb5cd
645bae1
 
 
2d8a71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: mit
metrics:
- accuracy
datasets:
- garythung/trashnet
---
## Priyo_Neuralnetwork

  class Priyo_NeuralNetwork:

    def __init__(self, input_size, hidden_size, output_size):
        # Inisialisasi bobot dan bias secara acak
        self.weights1 = np.random.randn(input_size, hidden_size)
        self.bias1 = np.zeros(hidden_size)
        self.weights2 = np.random.randn(hidden_size, output_size)
        self.bias2 = np.zeros(output_size)

    def sigmoid(self, x):
        clipped_x = np.clip(x, -5, 5)  # Clip values between -5 and 5
        return 1 / (1 + np.exp(-clipped_x))

    def forward(self, X):
        # Perhitungan forward propagation
        self.z1 = np.dot(X, self.weights1) + self.bias1
        self.a1 = self.sigmoid(self.z1)
        self.z2 = np.dot(self.a1, self.weights2) + self.bias2
        self.a2 = self.sigmoid(self.z2)
        return self.a2

    def backward(self, X, y, learning_rate):
        m = X.shape[0]
        dZ2 = self.a2 - y
        dW2 = 1/m * np.dot(self.a1.T, dZ2)
        db2 = 1/m * np.sum(dZ2, axis=0)
        dZ1 = np.dot(dZ2, self.weights2.T) * (1 - self.a1) * self.a1
        dW1 = 1/m * np.dot(X.T, dZ1)
        db1 = 1/m * np.sum(dZ1, axis=0)
    
        return dW1, db1, dW2, db2

    def train(self, X, y, epochs, learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8):
        m = X.shape[0]
    
        # Initialize moments for Adam
        v_dw1, v_db1, v_dw2, v_db2 = np.zeros_like(self.weights1), np.zeros_like(self.bias1), np.zeros_like(self.weights2), np.zeros_like(self.bias2)
        s_dw1, s_db1, s_dw2, s_db2 = np.zeros_like(self.weights1), np.zeros_like(self.bias1), np.zeros_like(self.weights2), np.zeros_like(self.bias2)
        t = 0
    
        for epoch in range(epochs):
            self.forward(X)
            dW1, db1, dW2, db2 = self.backward(X, y, learning_rate)

            # Update weights and biases using Adam
            t += 1
            
            # Update biased first moment estimate
            v_dw1 = beta1 * v_dw1 + (1 - beta1) * dW1
            v_db1 = beta1 * v_db1 + (1 - beta1) * db1
            v_dw2 = beta1 * v_dw2 + (1 - beta1) * dW2
            v_db2 = beta1 * v_db2 + (1 - beta1) * db2

            # Update biased second raw moment estimate
            s_dw1 = beta2 * s_dw1 + (1 - beta2) * np.square(dW1)
            s_db1 = beta2 * s_db1 + (1 - beta2) * np.square(db1)
            s_dw2 = beta2 * s_dw2 + (1 - beta2) * np.square(dW2)
            s_db2 = beta2 * s_db2 + (1 - beta2) * np.square(db2)
            
            # Compute bias-corrected first moment estimate
            v_dw1_corrected = v_dw1 / (1 - beta1**t)
            v_db1_corrected = v_db1 / (1 - beta1**t)
            v_dw2_corrected = v_dw2 / (1 - beta1**t)
            v_db2_corrected = v_db2 / (1 - beta1**t)
            
            # Compute bias-corrected second raw moment estimate
            s_dw1_corrected = s_dw1 / (1 - beta2**t)
            s_db1_corrected = s_db1 / (1 - beta2**t)
            s_dw2_corrected = s_dw2 / (1 - beta2**t)
            s_db2_corrected = s_db2 / (1 - beta2**t)
            
            # Update weights and biases
            self.weights1 -= learning_rate * v_dw1_corrected / (np.sqrt(s_dw1_corrected) + epsilon)
            self.bias1 -= learning_rate * v_db1_corrected / (np.sqrt(s_db1_corrected) + epsilon)
            self.weights2 -= learning_rate * v_dw2_corrected / (np.sqrt(s_dw2_corrected) + epsilon)
            self.bias2 -= learning_rate * v_db2_corrected / (np.sqrt(s_db2_corrected) + epsilon)

            if (epoch+1) % 100 == 0:
                print(f'Epoch {epoch+1}/{epochs}, loss: {self.loss(y, self.a2)}')

    def loss(self, y_true, y_pred):
        # Fungsi loss (misalnya binary cross-entropy)
        return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))

    def predict(self, X):
        # Prediksi menggunakan forward propagation
        y_pred = self.forward(X)
        # Rounding untuk klasifikasi biner
        y_pred = np.round(y_pred)
        return y_pred

    def accuracy(self, X, y):
        # Hitung akurasi
        y_pred = self.predict(X)
        accuracy = np.mean(y_pred == y)
        return accuracy